Model-J ResNet
Collection
1001 items
โข
Updated
This model is part of the Model-J dataset, introduced in:
Learning on Model Weights using Tree Experts (CVPR 2025) by Eliahu Horwitz*, Bar Cavia*, Jonathan Kahana*, Yedid Hoshen
๐ Project | ๐ Paper | ๐ป GitHub | ๐ค Dataset
| Attribute | Value |
|---|---|
| Subset | ResNet |
| Split | test |
| Base Model | microsoft/resnet-101 |
| Dataset | CIFAR100 (50 classes) |
| Parameter | Value |
|---|---|
| Learning Rate | 0.0005 |
| LR Scheduler | constant_with_warmup |
| Epochs | 2 |
| Max Train Steps | 666 |
| Batch Size | 64 |
| Weight Decay | 0.01 |
| Seed | 849 |
| Random Crop | False |
| Random Flip | False |
| Metric | Value |
|---|---|
| Train Accuracy | 0.9569 |
| Val Accuracy | 0.8653 |
| Test Accuracy | 0.8816 |
The model was fine-tuned on the following 50 CIFAR100 classes:
snail, lamp, clock, rabbit, plain, poppy, turtle, sweet_pepper, bear, ray, tulip, camel, beetle, skyscraper, television, sea, kangaroo, skunk, bridge, boy, streetcar, train, chimpanzee, house, crab, caterpillar, table, plate, tractor, cattle, sunflower, worm, otter, tank, bicycle, can, squirrel, maple_tree, bee, elephant, lawn_mower, leopard, aquarium_fish, lizard, pickup_truck, road, rose, shrew, crocodile, willow_tree
Base model
microsoft/resnet-101