Phind-70B
Phind-70B is a fine-tuned version of Llama 3.3 70B Instruct, optimized for code generation, technical reasoning, and general instruction following.
Model Details
| Attribute | Details |
|---|---|
| Base Model | meta-llama/Llama-3.3-70B-Instruct |
| Model Type | Causal Language Model |
| Parameters | 70 Billion |
| Context Length | 128K tokens |
| Language | English |
| License | Llama 3.3 Community License |
Intended Use
Phind-70B is designed for:
- Code generation across multiple programming languages
- Technical problem-solving and debugging
- General instruction following and reasoning tasks
- Multi-turn conversations requiring context retention
How to Use
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Phind/Phind-70B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are Phind, an intelligent assistant that helps with programming and technical questions."},
{"role": "user", "content": "Write a Python function to find the longest palindromic substring."},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)
Chat Template
This model uses the Llama 3 chat format:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_message}<|eot_id|><|start_header_id|>user<|end_header_id|>
{user_message}<|eot_id|><|start_header_id|>assistant<|end_header_id|}
{assistant_response}<|eot_id|>
Hardware Requirements
| Precision | VRAM Required |
|---|---|
| FP16/BF16 | ~140 GB |
| INT8 | ~70 GB |
| INT4 | ~35 GB |
For inference, we recommend using multiple GPUs with tensor parallelism or quantized versions for consumer hardware.
Limitations
- May occasionally generate incorrect or misleading information
- Not suitable for production use without additional safety measures
- Performance may vary on tasks outside the training distribution
- Should not be used for generating harmful, illegal, or unethical content
Acknowledgments
This model builds upon the excellent work by Meta on the Llama 3.3 model family. We are grateful for their contributions to open-source AI.
- Downloads last month
- 10
Model tree for Phind/Phind-70B
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct