chat-node / README.md
Pacific-Prime's picture
Upload README.md with huggingface_hub
13f8c22 verified
---
license: cc-by-nc-4.0
language:
- en
- fr
tags:
- complexity-deep
- transformer
- moe
- token-routed
- inl-dynamics
- mu-guided
- causal-lm
- chat
- conversational
- sft
pipeline_tag: text-generation
library_name: complexity-deep
base_model: Pacific-Prime/pacific-prime
model-index:
- name: chat-node
results: []
---
# Chat-Node 1.5B
> **Conversational chat model built on Pacific-Prime 1.5B with Mu-Guided Attention and Token-Routed MLP**
Chat-Node is a conversational variant of [Pacific-Prime 1.5B](https://huggingface.co/Pacific-Prime/pacific-prime), fine-tuned for general-purpose chat using the Alpaca-Cleaned dataset. Part of the Pacific-Prime node architecture for modular AI agents.
## Generation Example (Epoch 350)
![Generation at epoch 350](image.png)
---
## Model Details
| Attribute | Value |
|-----------|-------|
| Base Model | Pacific-Prime 1.5B v0.13.0 |
| Parameters | ~1.52B |
| Fine-tuning | SFT (Supervised Fine-Tuning) |
| Base Checkpoint | pacific-prime-python epoch 450 |
| Dataset | [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) (20K samples) |
| Current Epoch | 350 |
| Precision | F32 |
| Hardware | H100 80GB |
| Context Length | 2048 tokens |
### Training Hyperparameters
| Parameter | Value |
|-----------|-------|
| Learning Rate | 2e-5 |
| Batch Size | 4 |
| Gradient Accumulation | 8 (effective batch: 32) |
| Weight Decay | 0.01 |
| Warmup Ratio | 3% |
| Gradient Checkpointing | Enabled |
---
## Chat Format
Chat-Node uses a simple User / Assistant prompt format with an optional system message:
User: Give three tips for staying healthy.
Assistant:
### Chat Template (Jinja)
The model includes a chat template compatible with HuggingFace's `apply_chat_template`:
{% if messages[0]['role'] == 'system' %}{{ messages[0]['content'] }}
{% set messages = messages[1:] %}{% endif %}
{% for message in messages %}
{% if message['role'] == 'user' %}User: {{ message['content'] }}
{% elif message['role'] == 'assistant' %}Assistant: {{ message['content'] }}
{% endif %}
{% endfor %}
---
## Architecture
| Parameter | Value |
|-----------|-------|
| Hidden Size | 2048 |
| Intermediate Size | 5632 |
| Layers | 24 |
| Attention Heads | 16 |
| KV Heads (GQA) | 8 |
| Max Position | 2048 |
| Vocab Size | 32,000 |
| Experts (Token-Routed MLP) | 4 |
### Key Innovations (v0.13.0)
- **Mu-Guided KQV** - Learned equilibrium parameter biases K, Q, and V projections
- **Mu-Guided Expert Routing** - mu influences MLP expert selection
- **Mu Residual Highway** - Accumulated context across layers
- **Token-Routed MLP** - Deterministic 4-expert MoE with zero routing overhead
- **INL Dynamics** - Velocity tracking for temporal coherence (alpha=0.9, beta=0.1)
- **Grouped Query Attention** - 16 heads / 8 KV heads for efficient inference
- **QK Normalization** + **Flash Attention (SDPA)**
- **RoPE** positional embeddings
---
## Usage
### CLI (generate.py)
```bash
python generate.py -c ./checkpoints/pacific-prime-chat -m 300 -t 0.3 \
$'User: Give three tips for staying healthy.\n\nAssistant:'
```
### Python
```python
from complexity_deep import DeepForCausalLM
from tokenizers import Tokenizer
import torch
model = DeepForCausalLM.from_pretrained("Pacific-Prime/chat-node")
tokenizer = Tokenizer.from_file("tokenizer.json")
prompt = "User: Explain what a neural network is.\n\nAssistant:"
input_ids = torch.tensor([tokenizer.encode(prompt).ids])
output = model.generate(input_ids, max_new_tokens=300, temperature=0.3)
print(tokenizer.decode(output[0].tolist()))
```
---
## Files
| File | Description |
|------|-------------|
| `checkpoint_epoch350.pt` | Model weights (F32) |
| `config.json` | Architecture configuration |
| `tokenizer.json` | BPE tokenizer (32K vocab) |
| `tokenizer_config.json` | Tokenizer settings |
| `special_tokens_map.json` | Special tokens |
| `chat_template.jinja` | Chat prompt template |
---
## Limitations
- **In development**: Training ongoing, not yet production-ready
- **English-focused**: Alpaca dataset is primarily English
- **Instruction following**: May overshoot requested list lengths
- **Context window**: Limited to 2048 tokens
---
## Links
- [Paper - Zenodo](https://zenodo.org/records/18293026)
- [Base Model - Pacific-Prime 1.5B](https://huggingface.co/Pacific-Prime/pacific-prime)
- [GitHub - complexity-deep](https://github.com/Complexity-ML/complexity-deep)
- [PyPI - complexity-deep](https://pypi.org/project/complexity-deep/)
- [GitHub - mu-inference](https://github.com/Complexity-ML/mu-inference)
---
## License
**CC-BY-NC-4.0** (Creative Commons Attribution-NonCommercial 4.0)
---
## Citation
```bibtex
@misc{chat-node-2025,
title={Chat-Node: A Conversational 1.5B Model with Mu-Guided Attention},
author={Boris Peyriguere},
year={2025},
url={https://huggingface.co/Pacific-Prime/chat-node}
}
```