phi-3.5-AI-Vtuber-json : GGUF
This is a fine-tuned large language model based on Phi-3.5 Mini-Instruct, optimized for AI companion applications that require strict, machine-readable JSON output.
This was trained to always return responses in a consistent JSON format with response and emotion fields. This makes it easy to integrate with software that parses and uses AI outputs programmatically.
๐ Project Nova, where i have used this model: https://github.com/Navjot-Singh7/Project-Nova
Model Overview
Base Model: Phi-3.5 Mini-Instruct
Fine-Tuned For: AI companion behavior with structured JSON output
Output Format:
{
"response": "...",
"emotion": "..."
}
Primary Use Case: AI companion systems and applications where responses must be machine-readable.
Capabilities
This model has been fine-tuned to:
Generate companion-style text that is appropriate, engaging, and in JSON format.
Always include both:
response: the AIโs text output
emotion: a tag describing the emotional tone of the response
Produce outputs that are consistent and reliable for code integration.
Intended Use
Primary Use Cases
- AI companion applications
- Virtual characters or avatars
- VTuber or assistant personalities -Applications that require structured LLM output
- Emotion-aware conversational systems
Training Details
Custom Dataset - I created my own labeled dataset with 10โ20 original samples with JSON-style examples.
Synthetic Data Generation - Then I expanded this initial dataset using another language model to create a synthetic training corpus of ~1,800 samples.
Fine-Tuning Environment - Training was performed using Google Colab.
Dataset Composition - The dataset contains structured examples that guide the model to generate JSON output with response and emotion.
Usage Example
Below is an example of how the model might respond in your application:
{
"response": "Hello! I'm fine thank you... uhm.. did you have a good day?",
"emotion": "happy"
}
This makes it easy to parse and handle both the semantic content (response) and the emotional context (emotion) in code.
License
This model is licensed under the MIT License. You are free to use, modify, and distribute this model for personal or educational purposes.
Available Model files:
phi-3.5-mini-instruct.Q4_K_M.gguf
Ollama
An Ollama Modelfile is included for easy deployment.
This was trained 2x faster with Unsloth

- Downloads last month
- 87
4-bit
Model tree for Navpy/phi-3.5-AI-Vtuber-json
Base model
microsoft/Phi-3.5-mini-instruct