MoYoYo.tts / development.md
liumaolin
docs: add comprehensive usage manual for MoYoYo.tts
86f7d71

GPT-SoVITS 音色训练 HTTP API 服务架构设计

文档说明: 本文档是 API 服务的完整架构设计文档,包含设计规范和实现参考代码。

实现进度总览

模块 状态 说明
架构设计 ✅ 完成 双模式 API 设计(Quick Mode + Advanced Mode)
Pydantic Schema ✅ 已实现 app/models/schemas/ - task.py, experiment.py, file.py, common.py
数据库 Schema ✅ 设计完成 SQLite/PostgreSQL 表结构
适配器基类 ✅ 已实现 TaskQueueAdapter, ProgressAdapter, StorageAdapter, DatabaseAdapter
AsyncTrainingManager ✅ 已实现 本地任务队列完整实现
配置管理 ✅ 已实现 app/core/config.py
领域模型 ✅ 已实现 Task, TaskStatus, ProgressInfo
Pipeline 脚本 ✅ 已实现 app/scripts/run_pipeline.py
存储适配器 ✅ 已实现 app/adapters/local/storage.py - LocalStorageAdapter
数据库适配器 ✅ 已实现 app/adapters/local/database.py - SQLiteAdapter
进度适配器 ✅ 已实现 app/adapters/local/progress.py - LocalProgressAdapter
适配器工厂 ✅ 已实现 app/core/adapters.py - AdapterFactory
API 端点 ✅ 已实现 app/api/v1/endpoints/ - tasks, experiments, files, stages
服务层 ✅ 已实现 app/services/ - TaskService, ExperimentService, FileService
FastAPI 入口 ✅ 已实现 app/main.py - 应用入口和生命周期管理

一、架构总览

1.1 两种部署场景对比

维度 macOS本地训练 Linux服务器端训练
用户场景 个人开发者、小规模训练 生产环境、多用户、大规模训练
并发需求 单用户、串行任务 多用户、并发任务
资源管理 简单(单机GPU) 复杂(多GPU、分布式)
持久化需求 轻量级(SQLite/文件) 重量级(PostgreSQL/分布式存储)
任务队列 简单队列(内存/SQLite) 分布式队列(Celery+Redis)
API复杂度 简化版 完整版

1.1.1 macOS本地训练的运行模式

macOS本地训练可以有三种运行方式,需要根据最终交付形态选择合适的任务管理方案:

运行模式 描述 启动方式 任务管理推荐
开发模式 直接运行Python脚本 python main.py / uvicorn asyncio.subprocess ⭐
PyInstaller打包 打包为独立可执行文件 ./app 单个可执行文件 asyncio.subprocess ⭐
Electron集成 作为Electron子进程运行 Electron spawn Python进程 asyncio.subprocess ⭐

⚠️ PyInstaller + Electron 场景的特殊考量

当需要将训练工程通过PyInstaller打包并集成到Electron应用时,Huey不是合适的选择,原因如下:

  1. 多进程架构冲突:Huey需要独立的huey_consumer进程
  2. 进程生命周期复杂:Electron需要管理多个Python子进程
  3. 打包复杂度增加:PyInstaller需要正确打包所有依赖

推荐方案:使用 asyncio.subprocess 方案(见第7.1节),训练任务本身已经是子进程,无需额外的任务队列。

1.2 架构统一设计原则

核心理念: 使用适配器模式,统一API层和业务逻辑层,底层存储和任务执行通过适配器切换

┌─────────────────────────────────────────────────────┐
│              Unified API Layer (FastAPI)            │
│   /api/v1/tasks, /api/v1/experiments, /files, etc. │
└────────────────────┬────────────────────────────────┘
                     │
┌────────────────────▼────────────────────────────────┐
│              Service Layer (Unified)                │
│ TaskService, ExperimentService, FileService, etc.   │
└────────┬───────────────────────────────┬────────────┘
         │                               │
         │ Adapter Pattern               │
         │                               │
    ┌────▼─────┐                   ┌─────▼──────┐
    │  Local   │                   │  Server    │
    │  Adapter │                   │  Adapter   │
    └────┬─────┘                   └─────┬──────┘
         │                               │
    ┌────▼─────────────┐        ┌────────▼────────────┐
    │ Local Backend    │        │ Server Backend      │
    │ - SQLite         │        │ - PostgreSQL        │
    │ - asyncio.subproc│        │ - Celery+Redis      │
    │ - Local FS       │        │ - S3/MinIO          │
    └──────────────────┘        └─────────────────────┘

二、技术栈对比

2.1 macOS本地训练方案

Web框架: FastAPI
数据库: SQLite (aiosqlite)
任务管理: asyncio.subprocess (推荐) - 训练脚本本身是子进程
文件存储: 本地文件系统
进度推送: SSE (Server-Sent Events)
缓存: 内存 (lru_cache / cachetools)
日志: Loguru
配置: YAML / .env文件

优点:

  • 无需额外服务(Redis、PostgreSQL)
  • 部署简单,一键启动
  • 适合个人使用

缺点:

  • 不支持水平扩展
  • 单点故障
  • 任务并发能力有限

2.2 Linux服务器端训练方案

Web框架: FastAPI
数据库: PostgreSQL + Alembic (数据迁移)
任务队列: Celery + Redis
文件存储: MinIO / S3
进度推送: SSE + Redis Pub/Sub
缓存: Redis
日志: Loguru + ELK Stack (可选)
监控: Prometheus + Grafana
配置: 环境变量 + Consul/etcd (可选)

优点:

  • 高并发、高可用
  • 水平扩展
  • 完整的监控告警

缺点:

  • 部署复杂
  • 需要额外服务依赖

三、统一架构设计

3.1 项目结构

图例: ✅ 已实现 | [待实现] 设计完成待开发 | [Phase 2] 服务器模式后续实现

api_server/
├── app/
│   ├── __init__.py                    # ✅ 已实现
│   │
│   ├── api/                           # ✅ API 路由层
│   │   ├── __init__.py                # ✅ 已实现
│   │   ├── deps.py                    # ✅ 已实现 - 依赖注入
│   │   └── v1/
│   │       ├── __init__.py            # ✅ 已实现
│   │       ├── endpoints/
│   │       │   ├── __init__.py        # ✅ 已实现
│   │       │   ├── tasks.py           # ✅ 已实现 - Quick Mode 任务管理
│   │       │   ├── experiments.py     # ✅ 已实现 - Advanced Mode 实验管理
│   │       │   ├── stages.py          # ✅ 已实现 - 阶段参数模板
│   │       │   ├── files.py           # ✅ 已实现 - 文件管理
│   │       │   ├── models.py          # [待实现] 模型管理
│   │       │   └── inference.py       # [待实现] 推理接口
│   │       └── router.py              # ✅ 已实现 - 路由注册
│   │
│   ├── core/
│   │   ├── __init__.py                # ✅ 已实现
│   │   ├── config.py                  # ✅ 已实现 - Settings, 路径常量, get_pythonpath()
│   │   ├── adapters.py                # ✅ 已实现 - 适配器工厂
│   │   └── enums.py                   # [待实现] 枚举定义
│   │
│   ├── services/                      # ✅ 业务逻辑层
│   │   ├── __init__.py                # ✅ 已实现
│   │   ├── task_service.py            # ✅ 已实现 - Quick Mode 任务服务
│   │   ├── experiment_service.py      # ✅ 已实现 - Advanced Mode 实验服务
│   │   ├── file_service.py            # ✅ 已实现 - 文件管理服务
│   │   ├── pipeline_service.py        # [待实现]
│   │   └── progress_service.py        # [待实现]
│   │
│   ├── adapters/                      # 适配器层
│   │   ├── __init__.py                # ✅ 已实现
│   │   ├── base.py                    # ✅ 已实现 - TaskQueueAdapter, ProgressAdapter, StorageAdapter, DatabaseAdapter
│   │   ├── local/
│   │   │   ├── __init__.py            # ✅ 已实现
│   │   │   ├── task_queue.py          # ✅ 已实现 - AsyncTrainingManager (完整)
│   │   │   ├── storage.py             # ✅ 已实现 - LocalStorageAdapter
│   │   │   ├── database.py            # ✅ 已实现 - SQLiteAdapter
│   │   │   └── progress.py            # ✅ 已实现 - LocalProgressAdapter
│   │   └── server/                    # [Phase 2]
│   │       ├── storage.py             # S3/MinIO 适配器
│   │       ├── task_queue.py          # Celery 适配器
│   │       └── database.py            # PostgreSQL 适配器
│   │
│   ├── models/
│   │   ├── __init__.py                # ✅ 已实现
│   │   ├── domain.py                  # ✅ 已实现 - Task, TaskStatus, ProgressInfo
│   │   └── schemas/                   # ✅ 已实现 - Pydantic 模型
│   │       ├── __init__.py            # ✅ 已实现 - Schema 模块导出
│   │       ├── common.py              # ✅ 已实现 - 通用响应模型
│   │       ├── task.py                # ✅ 已实现 - Quick Mode 任务模型
│   │       ├── experiment.py          # ✅ 已实现 - Advanced Mode 实验/阶段模型
│   │       ├── file.py                # ✅ 已实现 - 文件上传/下载模型
│   │       └── inference.py           # [待实现] 推理相关模型
│   │
│   ├── scripts/
│   │   ├── __init__.py                # ✅ 已实现
│   │   └── run_pipeline.py            # ✅ 已实现 - Pipeline 子进程执行器
│   │
│   ├── workers/                       # [待实现] 任务执行器
│   │   ├── local_worker.py            # 本地执行器
│   │   └── celery_worker.py           # [Phase 2] Celery 执行器
│   │
│   └── main.py                        # ✅ 已实现 - FastAPI 入口
│
├── data/                              # 数据目录
│   ├── configs/                       # 任务配置文件
│   ├── tasks.db                       # SQLite 数据库
│   └── test_config.json               # 测试配置
│
├── config/                            # [待实现]
│   ├── local.yaml                     # 本地配置
│   └── server.yaml                    # 服务器配置
│
├── requirements/                      # [待实现]
│   ├── base.txt                       # 共同依赖
│   ├── local.txt                      # 本地额外依赖
│   └── server.txt                     # 服务器额外依赖
│
├── docker-compose.local.yml           # [待实现] 本地开发
├── docker-compose.server.yml          # [Phase 2] 服务器部署
└── README.md                          # [待实现]

3.2 核心适配器设计

3.2.1 抽象基类 ✅ 已完成

实现状态: 所有适配器抽象基类已在 app/adapters/base.py 中实现:

  • TaskQueueAdapter - 任务队列接口
  • ProgressAdapter - 进度管理接口
  • StorageAdapter - 文件存储接口
  • DatabaseAdapter - 数据库操作接口
# app/adapters/base.py - ✅ 已实现部分

from abc import ABC, abstractmethod
from typing import Dict, List, Optional, AsyncGenerator


class TaskQueueAdapter(ABC):
    """
    任务队列适配器抽象基类 ✅ 已实现
    
    定义任务队列的通用接口,支持本地(asyncio.subprocess)和
    服务器(Celery)两种实现方式。
    """
    
    @abstractmethod
    async def enqueue(self, task_id: str, config: Dict, priority: str = "normal") -> str:
        """将任务加入队列,返回job_id"""
        pass
    
    @abstractmethod
    async def get_status(self, job_id: str) -> Dict:
        """获取任务状态"""
        pass
    
    @abstractmethod
    async def cancel(self, job_id: str) -> bool:
        """取消任务"""
        pass
    
    @abstractmethod
    async def subscribe_progress(self, task_id: str) -> AsyncGenerator[Dict, None]:
        """订阅任务进度(SSE流)"""
        pass


class ProgressAdapter(ABC):
    """
    进度管理适配器抽象基类 ✅ 已实现
    
    用于更新和订阅任务进度,支持本地(内存队列)和
    服务器(Redis Pub/Sub)两种实现。
    """
    
    @abstractmethod
    async def update_progress(self, task_id: str, progress: Dict) -> None:
        """更新进度"""
        pass
    
    @abstractmethod
    async def get_progress(self, task_id: str) -> Optional[Dict]:
        """获取当前进度"""
        pass
    
    @abstractmethod
    async def subscribe(self, task_id: str) -> AsyncGenerator[Dict, None]:
        """订阅进度更新"""
        pass
# app/adapters/base.py - 待实现部分

class StorageAdapter(ABC):
    """存储适配器抽象基类 [待实现]"""
    
    @abstractmethod
    async def upload_file(self, file_data: bytes, filename: str, metadata: Dict) -> str:
        """上传文件,返回文件ID"""
        pass
    
    @abstractmethod
    async def download_file(self, file_id: str) -> bytes:
        """下载文件"""
        pass
    
    @abstractmethod
    async def delete_file(self, file_id: str) -> bool:
        """删除文件"""
        pass
    
    @abstractmethod
    async def get_file_metadata(self, file_id: str) -> Dict:
        """获取文件元数据"""
        pass


class DatabaseAdapter(ABC):
    """数据库适配器抽象基类 [待实现]"""
    
    @abstractmethod
    async def create_task(self, task: Task) -> Task:
        """创建任务"""
        pass
    
    @abstractmethod
    async def get_task(self, task_id: str) -> Optional[Task]:
        """获取任务"""
        pass
    
    @abstractmethod
    async def update_task(self, task_id: str, updates: Dict) -> Task:
        """更新任务"""
        pass
    
    @abstractmethod
    async def list_tasks(self, filters: Dict, limit: int, offset: int) -> List[Task]:
        """查询任务列表"""
        pass
    
    @abstractmethod
    async def delete_task(self, task_id: str) -> bool:
        """删除任务"""
        pass

3.2.2 本地适配器实现

AsyncTrainingManager ✅ 已完整实现

实现文件: app/adapters/local/task_queue.py

这是本地模式的核心组件,已完整实现以下功能:

  • 任务入队与异步执行
  • 子进程管理 (asyncio.create_subprocess_exec)
  • 进度解析与 SSE 流推送
  • 任务状态持久化(SQLite)
  • 任务取消与恢复
# app/adapters/local/task_queue.py - ✅ 已完整实现

class AsyncTrainingManager(TaskQueueAdapter):
    """
    基于 asyncio.subprocess 的异步任务管理器
    
    特点:
    1. 使用 asyncio.create_subprocess_exec() 异步启动训练子进程
    2. 完全非阻塞,与 FastAPI 异步模型完美契合
    3. SQLite 持久化任务状态,支持应用重启后恢复
    4. 实时解析子进程输出获取进度
    """
    
    def __init__(self, db_path: str = None, max_concurrent: int = 1):
        self.db_path = db_path or str(settings.SQLITE_PATH)
        self.max_concurrent = max_concurrent
        self.running_processes: Dict[str, asyncio.subprocess.Process] = {}
        self.progress_channels: Dict[str, asyncio.Queue] = {}
        self._init_db_sync()
    
    async def enqueue(self, task_id: str, config: Dict, priority: str = "normal") -> str:
        """将任务加入队列并异步启动"""
        # ... 完整实现见源文件
    
    async def get_status(self, job_id: str) -> Dict:
        """获取任务状态"""
        # ... 完整实现见源文件
    
    async def get_status_by_task_id(self, task_id: str) -> Dict:
        """通过 task_id 获取任务状态"""
        # ... 完整实现见源文件
    
    async def cancel(self, job_id: str) -> bool:
        """取消任务(优雅终止 + 强制终止)"""
        # ... 完整实现见源文件
    
    async def subscribe_progress(self, task_id: str) -> AsyncGenerator[Dict, None]:
        """订阅任务进度(用于 SSE 流)"""
        # ... 完整实现见源文件
    
    async def list_tasks(self, status: Optional[str] = None, limit: int = 50, offset: int = 0) -> List[Dict]:
        """列出任务"""
        # ... 完整实现见源文件
    
    async def recover_pending_tasks(self) -> int:
        """应用重启后恢复未完成的任务"""
        # ... 完整实现见源文件
    
    async def cleanup_old_tasks(self, days: int = 7) -> int:
        """清理旧任务记录"""
        # ... 完整实现见源文件
LocalStorageAdapter ✅ 已实现

实现文件: app/adapters/local/storage.py

基于本地文件系统的存储适配器,使用 aiofiles 实现异步 I/O。 支持文件上传/下载、元数据管理、音频信息提取等功能。

# app/adapters/local/storage.py - ✅ 已完整实现

class LocalStorageAdapter(StorageAdapter):
    """
    本地文件系统存储适配器
    
    特点:
    1. 使用 aiofiles 进行异步文件读写
    2. 元数据存储在 .meta.json 文件中
    3. 支持音频文件信息提取(时长、采样率等)
    """
    
    async def upload_file(self, file_data: bytes, filename: str, metadata: Dict) -> str:
        """上传文件,返回 file_id"""
        # ... 完整实现见源文件
    
    async def download_file(self, file_id: str) -> bytes:
        """下载文件"""
        # ... 完整实现见源文件
    
    async def delete_file(self, file_id: str) -> bool:
        """删除文件及其元数据"""
        # ... 完整实现见源文件
    
    async def get_file_metadata(self, file_id: str) -> Optional[Dict]:
        """获取文件元数据"""
        # ... 完整实现见源文件
    
    async def list_files(self, purpose: Optional[str] = None, limit: int = 50, offset: int = 0) -> List[Dict]:
        """列出文件"""
        # ... 完整实现见源文件
SQLiteAdapter ✅ 已实现

实现文件: app/adapters/local/database.py

基于 SQLite + aiosqlite 的数据库适配器,支持 Task 和 Experiment 的完整 CRUD 操作。

# app/adapters/local/database.py - ✅ 已完整实现

class SQLiteAdapter(DatabaseAdapter):
    """
    SQLite 数据库适配器
    
    特点:
    1. 使用 aiosqlite 实现异步数据库操作
    2. 支持 Task (Quick Mode) 和 Experiment (Advanced Mode) 管理
    3. 自动初始化数据库表结构
    """
    
    # Task CRUD
    async def create_task(self, task: Task) -> Task: ...
    async def get_task(self, task_id: str) -> Optional[Task]: ...
    async def update_task(self, task_id: str, updates: Dict) -> Optional[Task]: ...
    async def list_tasks(self, status: Optional[str] = None, limit: int = 50, offset: int = 0) -> List[Task]: ...
    async def delete_task(self, task_id: str) -> bool: ...
    async def count_tasks(self, status: Optional[str] = None) -> int: ...
    
    # Experiment CRUD
    async def create_experiment(self, experiment: Dict) -> Dict: ...
    async def get_experiment(self, exp_id: str) -> Optional[Dict]: ...
    async def update_experiment(self, exp_id: str, updates: Dict) -> Optional[Dict]: ...
    async def list_experiments(self, status: Optional[str] = None, limit: int = 50, offset: int = 0) -> List[Dict]: ...
    async def delete_experiment(self, exp_id: str) -> bool: ...
    
    # Stage 操作
    async def update_stage(self, exp_id: str, stage_type: str, updates: Dict) -> Optional[Dict]: ...
    async def get_stage(self, exp_id: str, stage_type: str) -> Optional[Dict]: ...
    async def get_all_stages(self, exp_id: str) -> List[Dict]: ...
    
    # File 记录
    async def create_file_record(self, file_data: Dict) -> Dict: ...
    async def get_file_record(self, file_id: str) -> Optional[Dict]: ...
    async def delete_file_record(self, file_id: str) -> bool: ...
    async def list_file_records(self, purpose: Optional[str] = None, limit: int = 50, offset: int = 0) -> List[Dict]: ...
LocalProgressAdapter ✅ 已实现

实现文件: app/adapters/local/progress.py

基于内存队列的进度管理适配器,支持多订阅者模式。

# app/adapters/local/progress.py - ✅ 已完整实现

class LocalProgressAdapter(ProgressAdapter):
    """
    本地内存进度管理适配器
    
    特点:
    1. 使用内存字典存储最新进度
    2. 使用 asyncio.Queue 实现订阅者模式
    3. 支持多订阅者同时订阅同一任务
    4. 与 AsyncTrainingManager 的进度推送机制兼容
    """
    
    async def update_progress(self, task_id: str, progress: Dict) -> None:
        """更新进度并通知所有订阅者"""
        # ... 完整实现见源文件
    
    async def get_progress(self, task_id: str) -> Optional[Dict]:
        """获取当前进度"""
        # ... 完整实现见源文件
    
    async def subscribe(self, task_id: str) -> AsyncGenerator[Dict, None]:
        """订阅进度更新(支持心跳、自动清理)"""
        # ... 完整实现见源文件

3.2.3 服务器适配器实现

# app/adapters/server/storage.py

from minio import Minio
from app.adapters.base import StorageAdapter

class S3StorageAdapter(StorageAdapter):
    """MinIO/S3对象存储适配器"""
    
    def __init__(self, endpoint: str, access_key: str, secret_key: str, bucket: str):
        self.client = Minio(
            endpoint,
            access_key=access_key,
            secret_key=secret_key,
            secure=False
        )
        self.bucket = bucket
        
        # 确保bucket存在
        if not self.client.bucket_exists(bucket):
            self.client.make_bucket(bucket)
    
    async def upload_file(self, file_data: bytes, filename: str, metadata: Dict) -> str:
        file_id = str(uuid.uuid4())
        
        # 上传文件
        self.client.put_object(
            self.bucket,
            file_id,
            io.BytesIO(file_data),
            len(file_data),
            metadata=metadata
        )
        
        return file_id
    
    # ... 其他方法实现
# app/adapters/server/database.py

from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from app.adapters.base import DatabaseAdapter

class PostgreSQLAdapter(DatabaseAdapter):
    """PostgreSQL数据库适配器"""
    
    def __init__(self, database_url: str):
        self.engine = create_async_engine(database_url)
        # 使用SQLAlchemy ORM
    
    async def create_task(self, task: Task) -> Task:
        async with AsyncSession(self.engine) as session:
            db_task = TaskModel(**task.dict())
            session.add(db_task)
            await session.commit()
            await session.refresh(db_task)
        return Task.from_orm(db_task)
    
    # ... 其他方法实现
# app/adapters/server/task_queue.py

from celery import Celery
from app.adapters.base import TaskQueueAdapter

class CeleryTaskQueueAdapter(TaskQueueAdapter):
    """Celery分布式任务队列"""
    
    def __init__(self, broker_url: str, backend_url: str):
        self.celery_app = Celery(
            'gpt_sovits_training',
            broker=broker_url,
            backend=backend_url
        )
    
    async def enqueue(self, task_id: str, config: Dict, priority: str = "normal") -> str:
        from app.workers.celery_worker import execute_training_pipeline
        
        result = execute_training_pipeline.apply_async(
            args=[task_id, config],
            queue=f'queue_{priority}',
            priority=self._get_priority_value(priority)
        )
        
        return result.id
    
    async def get_status(self, job_id: str) -> Dict:
        result = self.celery_app.AsyncResult(job_id)
        return {
            "status": result.state,
            "info": result.info
        }
    
    # ... 其他方法实现
# app/adapters/server/progress.py

import redis.asyncio as redis
from app.adapters.base import ProgressAdapter

class RedisProgressAdapter(ProgressAdapter):
    """Redis进度管理"""
    
    def __init__(self, redis_url: str):
        self.redis = redis.from_url(redis_url)
    
    async def update_progress(self, task_id: str, progress: Dict):
        # 保存到Redis Hash
        await self.redis.hset(
            f"task:progress:{task_id}",
            mapping={
                "data": json.dumps(progress),
                "updated_at": time.time()
            }
        )
        
        # 发布到Redis Pub/Sub
        await self.redis.publish(
            f"task:progress:{task_id}",
            json.dumps(progress)
        )
    
    async def get_progress(self, task_id: str) -> Optional[Dict]:
        data = await self.redis.hget(f"task:progress:{task_id}", "data")
        if data:
            return json.loads(data)
        return None
    
    async def subscribe(self, task_id: str) -> AsyncGenerator[Dict, None]:
        pubsub = self.redis.pubsub()
        await pubsub.subscribe(f"task:progress:{task_id}")
        
        try:
            async for message in pubsub.listen():
                if message['type'] == 'message':
                    progress = json.loads(message['data'])
                    yield progress
                    
                    if progress.get('status') in ['completed', 'failed', 'cancelled']:
                        break
        finally:
            await pubsub.unsubscribe(f"task:progress:{task_id}")

3.3 适配器工厂

# app/core/adapters.py

from app.core.config import settings
from app.adapters.base import StorageAdapter, DatabaseAdapter, TaskQueueAdapter, ProgressAdapter

class AdapterFactory:
    """适配器工厂,根据配置创建对应的适配器"""
    
    @staticmethod
    def create_storage_adapter() -> StorageAdapter:
        if settings.DEPLOYMENT_MODE == "local":
            from app.adapters.local.storage import LocalStorageAdapter
            return LocalStorageAdapter(base_path=settings.LOCAL_STORAGE_PATH)
        else:
            from app.adapters.server.storage import S3StorageAdapter
            return S3StorageAdapter(
                endpoint=settings.S3_ENDPOINT,
                access_key=settings.S3_ACCESS_KEY,
                secret_key=settings.S3_SECRET_KEY,
                bucket=settings.S3_BUCKET
            )
    
    @staticmethod
    def create_database_adapter() -> DatabaseAdapter:
        if settings.DEPLOYMENT_MODE == "local":
            from app.adapters.local.database import SQLiteAdapter
            return SQLiteAdapter(db_path=settings.SQLITE_PATH)
        else:
            from app.adapters.server.database import PostgreSQLAdapter
            return PostgreSQLAdapter(database_url=settings.DATABASE_URL)
    
    @staticmethod
    def create_task_queue_adapter() -> TaskQueueAdapter:
        if settings.DEPLOYMENT_MODE == "local":
            from app.adapters.local.task_queue import AsyncTrainingManager
            return AsyncTrainingManager(db_path=settings.SQLITE_PATH)
        else:
            from app.adapters.server.task_queue import CeleryTaskQueueAdapter
            return CeleryTaskQueueAdapter(
                broker_url=settings.CELERY_BROKER_URL,
                backend_url=settings.CELERY_RESULT_BACKEND
            )
    
    @staticmethod
    def create_progress_adapter() -> ProgressAdapter:
        if settings.DEPLOYMENT_MODE == "local":
            from app.adapters.local.progress import LocalProgressAdapter
            return LocalProgressAdapter()
        else:
            from app.adapters.server.progress import RedisProgressAdapter
            return RedisProgressAdapter(redis_url=settings.REDIS_URL)


# 全局单例
storage_adapter = AdapterFactory.create_storage_adapter()
database_adapter = AdapterFactory.create_database_adapter()
task_queue_adapter = AdapterFactory.create_task_queue_adapter()
progress_adapter = AdapterFactory.create_progress_adapter()

3.4 统一配置管理

# app/core/config.py

from pydantic_settings import BaseSettings
from typing import Literal

class Settings(BaseSettings):
    # 部署模式
    DEPLOYMENT_MODE: Literal["local", "server"] = "local"
    
    # 通用配置
    API_V1_PREFIX: str = "/api/v1"
    PROJECT_NAME: str = "GPT-SoVITS Training API"
    
    # 本地模式配置
    LOCAL_STORAGE_PATH: str = "./data/files"
    SQLITE_PATH: str = "./data/app.db"
    LOCAL_MAX_WORKERS: int = 1  # 本地同时运行的训练任务数
    
    # 服务器模式配置
    DATABASE_URL: str = "postgresql+asyncpg://user:pass@localhost/gpt_sovits"
    REDIS_URL: str = "redis://localhost:6379/0"
    CELERY_BROKER_URL: str = "redis://localhost:6379/1"
    CELERY_RESULT_BACKEND: str = "redis://localhost:6379/2"
    
    S3_ENDPOINT: str = "localhost:9000"
    S3_ACCESS_KEY: str = "minioadmin"
    S3_SECRET_KEY: str = "minioadmin"
    S3_BUCKET: str = "gpt-sovits"
    
    class Config:
        env_file = ".env"
        case_sensitive = True

settings = Settings()

四、统一API接口(无差异)

无论是本地还是服务器模式,API接口完全一致。

4.1 API 设计目标

针对不同用户群体,提供两套独立的 API 体系:

用户类型 需求 API 模式 核心概念 API 前缀
小白用户 上传音频即可训练,无需了解细节 Quick Mode Task(任务) /api/v1/tasks
专家用户 精细控制每个阶段参数,分阶段执行 Advanced Mode Experiment(实验)+ Stage(阶段) /api/v1/experiments

4.2 完整 API 端点列表

Quick Mode API(小白用户)

方法 路径 描述
POST /api/v1/tasks 创建一键训练任务
GET /api/v1/tasks 获取任务列表
GET /api/v1/tasks/{task_id} 获取任务详情
DELETE /api/v1/tasks/{task_id} 取消任务
GET /api/v1/tasks/{task_id}/progress SSE 进度订阅

Advanced Mode API(专家用户)

方法 路径 描述
POST /api/v1/experiments 创建实验(不立即执行)
GET /api/v1/experiments 获取实验列表
GET /api/v1/experiments/{exp_id} 获取实验详情
DELETE /api/v1/experiments/{exp_id} 删除实验
PATCH /api/v1/experiments/{exp_id} 更新实验基础配置
POST /api/v1/experiments/{exp_id}/stages/{stage_type} 执行指定阶段
GET /api/v1/experiments/{exp_id}/stages 获取所有阶段状态
GET /api/v1/experiments/{exp_id}/stages/{stage_type} 获取指定阶段状态/结果
GET /api/v1/experiments/{exp_id}/stages/{stage_type}/progress SSE 阶段进度订阅
DELETE /api/v1/experiments/{exp_id}/stages/{stage_type} 取消正在执行的阶段

通用 API

方法 路径 描述
POST /api/v1/files 上传文件
GET /api/v1/files 获取文件列表
GET /api/v1/files/{file_id} 下载文件
DELETE /api/v1/files/{file_id} 删除文件
GET /api/v1/stages/presets 获取阶段预设列表
GET /api/v1/stages/{stage_type}/schema 获取阶段参数模板

4.3 Quick Mode API 详解(小白用户)

4.3.1 创建一键训练任务

POST /api/v1/tasks

只需上传音频文件,系统自动配置所有训练参数并执行完整流程:

{
  "exp_name": "my_voice",
  "audio_file_id": "550e8400-e29b-41d4-a716-446655440000",
  "options": {
    "version": "v2",
    "language": "zh",
    "quality": "standard"
  }
}

参数说明

字段 类型 必填 说明
exp_name string 实验名称
audio_file_id string 已上传音频文件的 ID
options.version string 模型版本,默认 "v2"
options.language string 语言,默认 "zh"
options.quality string 训练质量:"fast" / "standard" / "high"

质量预设

quality SoVITS epochs GPT epochs 训练时长
fast 4 8 ~10分钟
standard 8 15 ~20分钟
high 16 30 ~40分钟

系统自动执行流程

audio_slice -> asr -> text_feature -> hubert_feature -> semantic_token -> sovits_train -> gpt_train

响应示例

{
  "id": "task-550e8400-e29b-41d4-a716-446655440000",
  "exp_name": "my_voice",
  "status": "queued",
  "current_stage": null,
  "progress": 0.0,
  "overall_progress": 0.0,
  "created_at": "2024-01-01T10:00:00Z"
}

4.3.2 获取任务状态

GET /api/v1/tasks/{task_id}

响应示例

{
  "id": "task-550e8400-e29b-41d4-a716-446655440000",
  "exp_name": "my_voice",
  "status": "running",
  "current_stage": "sovits_train",
  "progress": 0.45,
  "overall_progress": 0.72,
  "message": "SoVITS 训练中 Epoch 8/16",
  "created_at": "2024-01-01T10:00:00Z",
  "started_at": "2024-01-01T10:00:05Z"
}

4.3.3 SSE 进度订阅

GET /api/v1/tasks/{task_id}/progress

返回 SSE 流,实时推送进度更新:

event: progress
data: {"stage": "sovits_train", "progress": 0.45, "message": "Epoch 8/16"}

event: progress
data: {"stage": "sovits_train", "progress": 0.50, "message": "Epoch 9/16"}

event: completed
data: {"status": "completed", "message": "训练完成"}

4.4 Advanced Mode API 详解(专家用户)

Advanced Mode 引入实验(Experiment)概念,允许前端分阶段调用不同 API 触发训练。

4.4.1 专家模式交互流程

sequenceDiagram
    participant Frontend
    participant API
    participant Pipeline

    Frontend->>API: POST /experiments (创建实验)
    API-->>Frontend: {exp_id: "abc123"}
    
    Frontend->>API: POST /experiments/abc123/stages/audio_slice
    API->>Pipeline: 启动音频切片
    Frontend->>API: GET .../audio_slice/progress (SSE)
    Pipeline-->>Frontend: 进度更新...
    Pipeline-->>Frontend: {status: "completed"}
    
    Note over Frontend: 用户查看切片结果,调整参数
    
    Frontend->>API: POST /experiments/abc123/stages/asr
    API->>Pipeline: 启动 ASR
    Pipeline-->>Frontend: 进度更新...
    
    Note over Frontend: 继续后续阶段...

4.4.2 创建实验

POST /api/v1/experiments

创建实验但不立即执行,用户可以逐阶段控制:

{
  "exp_name": "my_voice_custom",
  "version": "v2",
  "gpu_numbers": "0",
  "is_half": true,
  "audio_file_id": "550e8400-e29b-41d4-a716-446655440000"
}

参数说明

字段 类型 必填 说明
exp_name string 实验名称
version string 模型版本,默认 "v2"
gpu_numbers string GPU 编号,默认 "0"
is_half bool 是否使用半精度,默认 true
audio_file_id string 已上传音频文件的 ID

响应示例

{
  "id": "exp-abc123",
  "exp_name": "my_voice_custom",
  "version": "v2",
  "status": "created",
  "stages": {
    "audio_slice": { "status": "pending" },
    "asr": { "status": "pending" },
    "text_feature": { "status": "pending" },
    "hubert_feature": { "status": "pending" },
    "semantic_token": { "status": "pending" },
    "sovits_train": { "status": "pending" },
    "gpt_train": { "status": "pending" }
  },
  "created_at": "2024-01-01T10:00:00Z"
}

4.4.3 执行阶段

POST /api/v1/experiments/{exp_id}/stages/{stage_type}

触发指定阶段执行,可传入阶段特定参数覆盖默认值:

可用的阶段类型(stage_type)

stage_type 描述 依赖阶段
audio_slice 音频切片
asr 语音识别 audio_slice
text_feature 文本特征提取 asr
hubert_feature HuBERT 特征提取 audio_slice
semantic_token 语义 token 提取 hubert_feature
sovits_train SoVITS 训练 text_feature, semantic_token
gpt_train GPT 训练 text_feature, semantic_token

请求示例(执行音频切片)

POST /api/v1/experiments/exp-abc123/stages/audio_slice
{
  "threshold": -34,
  "min_length": 4000,
  "min_interval": 300,
  "hop_size": 10,
  "max_sil_kept": 500
}

请求示例(执行 SoVITS 训练)

POST /api/v1/experiments/exp-abc123/stages/sovits_train
{
  "batch_size": 8,
  "total_epoch": 16,
  "save_every_epoch": 4,
  "pretrained_s2G": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
  "pretrained_s2D": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2D2333k.pth"
}

响应示例

{
  "exp_id": "exp-abc123",
  "stage_type": "sovits_train",
  "status": "running",
  "job_id": "job-xyz789",
  "config": {
    "batch_size": 8,
    "total_epoch": 16,
    "save_every_epoch": 4
  },
  "started_at": "2024-01-01T10:30:00Z"
}

4.4.4 获取阶段状态

GET /api/v1/experiments/{exp_id}/stages/{stage_type}

响应示例(已完成)

{
  "stage_type": "sovits_train",
  "status": "completed",
  "started_at": "2024-01-01T10:30:00Z",
  "completed_at": "2024-01-01T11:00:00Z",
  "config": {
    "batch_size": 8,
    "total_epoch": 16,
    "save_every_epoch": 4
  },
  "outputs": {
    "model_path": "logs/my_voice_custom/sovits_e16.pth",
    "metrics": {
      "final_loss": 0.023,
      "best_epoch": 14
    }
  }
}

响应示例(运行中)

{
  "stage_type": "sovits_train",
  "status": "running",
  "started_at": "2024-01-01T10:30:00Z",
  "progress": 0.45,
  "message": "Epoch 8/16, Loss: 0.034"
}

4.4.5 获取所有阶段状态

GET /api/v1/experiments/{exp_id}/stages

响应示例

{
  "exp_id": "exp-abc123",
  "stages": [
    {
      "stage_type": "audio_slice",
      "status": "completed",
      "completed_at": "2024-01-01T10:05:00Z"
    },
    {
      "stage_type": "asr",
      "status": "completed",
      "completed_at": "2024-01-01T10:10:00Z"
    },
    {
      "stage_type": "text_feature",
      "status": "completed",
      "completed_at": "2024-01-01T10:12:00Z"
    },
    {
      "stage_type": "hubert_feature",
      "status": "completed",
      "completed_at": "2024-01-01T10:20:00Z"
    },
    {
      "stage_type": "semantic_token",
      "status": "completed",
      "completed_at": "2024-01-01T10:25:00Z"
    },
    {
      "stage_type": "sovits_train",
      "status": "running",
      "started_at": "2024-01-01T10:30:00Z",
      "progress": 0.45
    },
    {
      "stage_type": "gpt_train",
      "status": "pending"
    }
  ]
}

4.4.6 SSE 阶段进度订阅

GET /api/v1/experiments/{exp_id}/stages/{stage_type}/progress

返回 SSE 流,实时推送阶段进度:

event: progress
data: {"epoch": 8, "total_epochs": 16, "progress": 0.50, "loss": 0.034}

event: progress
data: {"epoch": 9, "total_epochs": 16, "progress": 0.56, "loss": 0.031}

event: checkpoint
data: {"epoch": 8, "model_path": "logs/my_voice/sovits_e8.pth"}

event: completed
data: {"status": "completed", "final_loss": 0.023}

4.4.7 取消阶段执行

DELETE /api/v1/experiments/{exp_id}/stages/{stage_type}

取消正在执行的阶段:

响应示例

{
  "success": true,
  "message": "阶段 sovits_train 已取消",
  "stage_type": "sovits_train",
  "status": "cancelled"
}

4.4.8 重新执行阶段

专家用户可以对任意已完成的阶段重新执行(使用新参数):

POST /api/v1/experiments/{exp_id}/stages/sovits_train

如果阶段已完成,再次调用会重新执行。响应中会包含 rerun: true 标记:

{
  "exp_id": "exp-abc123",
  "stage_type": "sovits_train",
  "status": "running",
  "rerun": true,
  "previous_run": {
    "completed_at": "2024-01-01T11:00:00Z",
    "outputs": { "model_path": "logs/my_voice/sovits_e16.pth" }
  }
}

4.5 阶段参数模板 API

4.5.1 获取阶段预设列表

GET /api/v1/stages/presets

响应示例

{
  "presets": [
    {
      "id": "full_training",
      "name": "完整训练流程",
      "description": "包含所有阶段的标准训练",
      "stages": ["audio_slice", "asr", "text_feature", "hubert_feature", "semantic_token", "sovits_train", "gpt_train"]
    },
    {
      "id": "retrain_sovits",
      "name": "重训 SoVITS",
      "description": "跳过预处理,仅重新训练 SoVITS",
      "stages": ["sovits_train"]
    },
    {
      "id": "feature_extraction",
      "name": "特征提取",
      "description": "仅执行音频切片和特征提取",
      "stages": ["audio_slice", "asr", "text_feature", "hubert_feature", "semantic_token"]
    }
  ]
}

4.5.2 获取阶段参数模板

GET /api/v1/stages/{stage_type}/schema

响应示例/api/v1/stages/audio_slice/schema):

{
  "type": "audio_slice",
  "name": "音频切片",
  "description": "将长音频切分为短片段",
  "parameters": {
    "threshold": {
      "type": "integer",
      "default": -34,
      "min": -60,
      "max": 0,
      "description": "静音检测阈值 (dB)"
    },
    "min_length": {
      "type": "integer",
      "default": 4000,
      "min": 1000,
      "max": 10000,
      "description": "最小切片长度 (ms)"
    },
    "min_interval": {
      "type": "integer",
      "default": 300,
      "min": 100,
      "max": 1000,
      "description": "最小静音间隔 (ms)"
    },
    "hop_size": {
      "type": "integer",
      "default": 10,
      "min": 5,
      "max": 50,
      "description": "检测步长 (ms)"
    },
    "max_sil_kept": {
      "type": "integer",
      "default": 500,
      "min": 100,
      "max": 2000,
      "description": "切片保留的最大静音长度 (ms)"
    }
  }
}

响应示例/api/v1/stages/sovits_train/schema):

{
  "type": "sovits_train",
  "name": "SoVITS 训练",
  "description": "训练 SoVITS 声码器模型",
  "parameters": {
    "batch_size": {
      "type": "integer",
      "default": 4,
      "min": 1,
      "max": 32,
      "description": "批次大小,显存不足时减小"
    },
    "total_epoch": {
      "type": "integer",
      "default": 8,
      "min": 1,
      "max": 100,
      "description": "训练总轮数"
    },
    "save_every_epoch": {
      "type": "integer",
      "default": 4,
      "min": 1,
      "description": "每 N 轮保存一次模型"
    },
    "pretrained_s2G": {
      "type": "string",
      "default": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
      "description": "预训练生成器模型路径"
    },
    "pretrained_s2D": {
      "type": "string",
      "default": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2D2333k.pth",
      "description": "预训练判别器模型路径"
    }
  }
}

4.6 Pydantic Schema 设计

4.6.1 Quick Mode Schema

from typing import Literal, Optional
from pydantic import BaseModel, Field

class QuickModeOptions(BaseModel):
    version: Literal["v1", "v2", "v2Pro", "v3", "v4"] = "v2"
    language: str = "zh"
    quality: Literal["fast", "standard", "high"] = "standard"

class QuickModeRequest(BaseModel):
    """小白用户一键训练请求"""
    exp_name: str = Field(..., min_length=1, max_length=100)
    audio_file_id: str
    options: QuickModeOptions = QuickModeOptions()

4.6.2 Advanced Mode Schema

from typing import Literal, Optional, Dict, Any, List
from pydantic import BaseModel, Field
from datetime import datetime

# ============================================================
# 实验管理
# ============================================================

class ExperimentCreate(BaseModel):
    """创建实验请求"""
    exp_name: str = Field(..., min_length=1, max_length=100, description="实验名称")
    version: Literal["v1", "v2", "v2Pro", "v3", "v4"] = Field(default="v2", description="模型版本")
    gpu_numbers: str = Field(default="0", description="GPU 编号")
    is_half: bool = Field(default=True, description="是否使用半精度")
    audio_file_id: str = Field(..., description="音频文件 ID")

class ExperimentUpdate(BaseModel):
    """更新实验请求"""
    exp_name: Optional[str] = Field(None, min_length=1, max_length=100)
    gpu_numbers: Optional[str] = None
    is_half: Optional[bool] = None

class StageStatus(BaseModel):
    """阶段状态"""
    stage_type: str
    status: Literal["pending", "running", "completed", "failed", "cancelled"]
    progress: Optional[float] = None
    message: Optional[str] = None
    started_at: Optional[datetime] = None
    completed_at: Optional[datetime] = None
    config: Optional[Dict[str, Any]] = None
    outputs: Optional[Dict[str, Any]] = None

class ExperimentResponse(BaseModel):
    """实验响应"""
    id: str
    exp_name: str
    version: str
    status: str
    gpu_numbers: str
    is_half: bool
    audio_file_id: str
    stages: Dict[str, StageStatus]
    created_at: datetime
    updated_at: Optional[datetime] = None

# ============================================================
# 阶段执行
# ============================================================

class StageExecuteRequest(BaseModel):
    """阶段执行请求基类"""
    class Config:
        extra = "allow"  # 允许额外字段(阶段特定参数)

class AudioSliceParams(StageExecuteRequest):
    """音频切片参数"""
    threshold: int = Field(default=-34, ge=-60, le=0, description="静音检测阈值 (dB)")
    min_length: int = Field(default=4000, ge=1000, le=10000, description="最小切片长度 (ms)")
    min_interval: int = Field(default=300, ge=100, le=1000, description="最小静音间隔 (ms)")
    hop_size: int = Field(default=10, ge=5, le=50, description="检测步长 (ms)")
    max_sil_kept: int = Field(default=500, ge=100, le=2000, description="保留最大静音长度 (ms)")

class ASRParams(StageExecuteRequest):
    """ASR 参数"""
    model: str = Field(default="达摩 ASR (中文)", description="ASR 模型")
    language: str = Field(default="zh", description="语言")

class SoVITSTrainParams(StageExecuteRequest):
    """SoVITS 训练参数"""
    batch_size: int = Field(default=4, ge=1, le=32, description="批次大小")
    total_epoch: int = Field(default=8, ge=1, le=100, description="训练总轮数")
    save_every_epoch: int = Field(default=4, ge=1, description="保存间隔")
    pretrained_s2G: Optional[str] = Field(None, description="预训练生成器路径")
    pretrained_s2D: Optional[str] = Field(None, description="预训练判别器路径")

class GPTTrainParams(StageExecuteRequest):
    """GPT 训练参数"""
    batch_size: int = Field(default=4, ge=1, le=32, description="批次大小")
    total_epoch: int = Field(default=15, ge=1, le=100, description="训练总轮数")
    save_every_epoch: int = Field(default=5, ge=1, description="保存间隔")
    pretrained_s1: Optional[str] = Field(None, description="预训练模型路径")

class StageExecuteResponse(BaseModel):
    """阶段执行响应"""
    exp_id: str
    stage_type: str
    status: Literal["running", "queued"]
    job_id: str
    config: Dict[str, Any]
    rerun: bool = False
    previous_run: Optional[Dict[str, Any]] = None
    started_at: datetime

4.6.3 Task Schema(Quick Mode 响应)

class TaskResponse(BaseModel):
    """任务响应(Quick Mode)"""
    id: str = Field(..., description="任务唯一标识")
    exp_name: str = Field(..., description="实验名称")
    status: Literal["queued", "running", "completed", "failed", "cancelled"]
    current_stage: Optional[str] = None
    progress: float = Field(default=0.0, ge=0.0, le=1.0, description="当前阶段进度")
    overall_progress: float = Field(default=0.0, ge=0.0, le=1.0, description="总体进度")
    message: Optional[str] = None
    error_message: Optional[str] = None
    created_at: Optional[datetime] = None
    started_at: Optional[datetime] = None
    completed_at: Optional[datetime] = None
    
    class Config:
        from_attributes = True

4.7 API 实现示例

4.7.1 Quick Mode API 实现

# app/api/v1/endpoints/tasks.py

from fastapi import APIRouter, HTTPException, Depends
from app.services.task_service import TaskService
from app.models.schemas.task import QuickModeRequest, TaskResponse

router = APIRouter()

@router.post("/tasks", response_model=TaskResponse)
async def create_task(
    request: QuickModeRequest,
    task_service: TaskService = Depends(get_task_service)
):
    """
    创建一键训练任务(小白用户)
    
    上传音频文件后,系统自动配置参数并执行完整训练流程。
    """
    return await task_service.create_quick_task(request)

@router.get("/tasks/{task_id}", response_model=TaskResponse)
async def get_task(
    task_id: str,
    task_service: TaskService = Depends(get_task_service)
):
    """获取任务详情"""
    task = await task_service.get_task(task_id)
    if not task:
        raise HTTPException(status_code=404, detail="Task not found")
    return task

@router.delete("/tasks/{task_id}")
async def cancel_task(
    task_id: str,
    task_service: TaskService = Depends(get_task_service)
):
    """取消任务"""
    success = await task_service.cancel_task(task_id)
    if not success:
        raise HTTPException(status_code=404, detail="Task not found or cannot be cancelled")
    return {"success": True, "message": "任务已取消"}

4.7.2 Advanced Mode API 实现

# app/api/v1/endpoints/experiments.py

from fastapi import APIRouter, HTTPException, Depends, Body
from typing import Dict, Any
from app.services.experiment_service import ExperimentService
from app.models.schemas.experiment import (
    ExperimentCreate,
    ExperimentResponse,
    StageExecuteResponse,
    StageStatus,
)

router = APIRouter()

@router.post("/experiments", response_model=ExperimentResponse)
async def create_experiment(
    request: ExperimentCreate,
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """
    创建实验(专家用户)
    
    创建实验但不立即执行,用户可以逐阶段控制训练流程。
    """
    return await experiment_service.create_experiment(request)

@router.get("/experiments/{exp_id}", response_model=ExperimentResponse)
async def get_experiment(
    exp_id: str,
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """获取实验详情"""
    experiment = await experiment_service.get_experiment(exp_id)
    if not experiment:
        raise HTTPException(status_code=404, detail="Experiment not found")
    return experiment

@router.post("/experiments/{exp_id}/stages/{stage_type}", response_model=StageExecuteResponse)
async def execute_stage(
    exp_id: str,
    stage_type: str,
    params: Dict[str, Any] = Body(default={}),
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """
    执行指定阶段
    
    可传入阶段特定参数覆盖默认值。如果阶段已完成,会重新执行。
    """
    # 验证阶段类型
    valid_stages = ["audio_slice", "asr", "text_feature", "hubert_feature", 
                    "semantic_token", "sovits_train", "gpt_train"]
    if stage_type not in valid_stages:
        raise HTTPException(status_code=400, detail=f"Invalid stage type: {stage_type}")
    
    # 检查依赖阶段是否完成
    dependencies = await experiment_service.check_stage_dependencies(exp_id, stage_type)
    if not dependencies["satisfied"]:
        raise HTTPException(
            status_code=400, 
            detail=f"依赖阶段未完成: {', '.join(dependencies['missing'])}"
        )
    
    return await experiment_service.execute_stage(exp_id, stage_type, params)

@router.get("/experiments/{exp_id}/stages", response_model=Dict[str, StageStatus])
async def get_all_stages(
    exp_id: str,
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """获取所有阶段状态"""
    return await experiment_service.get_all_stages(exp_id)

@router.get("/experiments/{exp_id}/stages/{stage_type}", response_model=StageStatus)
async def get_stage(
    exp_id: str,
    stage_type: str,
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """获取指定阶段状态和结果"""
    stage = await experiment_service.get_stage(exp_id, stage_type)
    if not stage:
        raise HTTPException(status_code=404, detail="Stage not found")
    return stage

@router.delete("/experiments/{exp_id}/stages/{stage_type}")
async def cancel_stage(
    exp_id: str,
    stage_type: str,
    experiment_service: ExperimentService = Depends(get_experiment_service)
):
    """取消正在执行的阶段"""
    success = await experiment_service.cancel_stage(exp_id, stage_type)
    if not success:
        raise HTTPException(status_code=400, detail="Stage not running or cannot be cancelled")
    return {"success": True, "message": f"阶段 {stage_type} 已取消"}

4.7.3 服务层实现

# app/services/experiment_service.py

from typing import Dict, Any, Optional
from datetime import datetime
import uuid

from app.core.adapters import database_adapter, task_queue_adapter
from app.models.schemas.experiment import ExperimentCreate, ExperimentResponse

# 阶段依赖关系
STAGE_DEPENDENCIES = {
    "audio_slice": [],
    "asr": ["audio_slice"],
    "text_feature": ["asr"],
    "hubert_feature": ["audio_slice"],
    "semantic_token": ["hubert_feature"],
    "sovits_train": ["text_feature", "semantic_token"],
    "gpt_train": ["text_feature", "semantic_token"],
}

class ExperimentService:
    """实验服务(Advanced Mode)"""
    
    def __init__(self):
        self.db = database_adapter
        self.queue = task_queue_adapter
    
    async def create_experiment(self, request: ExperimentCreate) -> ExperimentResponse:
        """创建实验"""
        exp_id = f"exp-{uuid.uuid4().hex[:8]}"
        
        # 初始化所有阶段为 pending 状态
        stages = {
            stage: {"status": "pending", "config": None, "outputs": None}
            for stage in STAGE_DEPENDENCIES.keys()
        }
        
        experiment = {
            "id": exp_id,
            "exp_name": request.exp_name,
            "version": request.version,
            "gpu_numbers": request.gpu_numbers,
            "is_half": request.is_half,
            "audio_file_id": request.audio_file_id,
            "status": "created",
            "stages": stages,
            "created_at": datetime.utcnow(),
        }
        
        await self.db.create_experiment(experiment)
        return ExperimentResponse(**experiment)
    
    async def check_stage_dependencies(self, exp_id: str, stage_type: str) -> Dict:
        """检查阶段依赖是否满足"""
        experiment = await self.db.get_experiment(exp_id)
        dependencies = STAGE_DEPENDENCIES.get(stage_type, [])
        
        missing = []
        for dep in dependencies:
            if experiment["stages"][dep]["status"] != "completed":
                missing.append(dep)
        
        return {
            "satisfied": len(missing) == 0,
            "missing": missing
        }
    
    async def execute_stage(
        self, 
        exp_id: str, 
        stage_type: str, 
        params: Dict[str, Any]
    ) -> StageExecuteResponse:
        """执行阶段"""
        experiment = await self.db.get_experiment(exp_id)
        
        # 检查是否是重新执行
        current_stage = experiment["stages"][stage_type]
        is_rerun = current_stage["status"] == "completed"
        previous_run = current_stage if is_rerun else None
        
        # 构建阶段配置
        stage_config = {
            "exp_id": exp_id,
            "exp_name": experiment["exp_name"],
            "version": experiment["version"],
            "gpu_numbers": experiment["gpu_numbers"],
            "is_half": experiment["is_half"],
            "stage_type": stage_type,
            "params": params,
        }
        
        # 加入执行队列
        job_id = await self.queue.enqueue_stage(
            exp_id=exp_id,
            stage_type=stage_type,
            config=stage_config
        )
        
        # 更新阶段状态
        await self.db.update_stage(exp_id, stage_type, {
            "status": "running",
            "config": params,
            "started_at": datetime.utcnow(),
            "job_id": job_id,
        })
        
        return StageExecuteResponse(
            exp_id=exp_id,
            stage_type=stage_type,
            status="running",
            job_id=job_id,
            config=params,
            rerun=is_rerun,
            previous_run=previous_run,
            started_at=datetime.utcnow(),
        )

五、部署配置

5.1 本地模式 (macOS)

配置文件: config/local.yaml

deployment_mode: local
local_storage_path: ./data/files
sqlite_path: ./data/app.db
local_max_workers: 1  # macOS单GPU,串行执行

启动命令:

# 安装依赖
pip install -r requirements/base.txt -r requirements/local.txt

# 启动API服务
uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload

# 无需额外服务!

docker-compose.local.yml:

version: '3.8'

services:
  api:
    build: .
    ports:
      - "8000:8000"
    volumes:
      - ./data:/app/data
      - ./logs:/app/logs
    environment:
      - DEPLOYMENT_MODE=local

5.2 服务器模式 (Linux)

配置文件: config/server.yaml

deployment_mode: server
database_url: postgresql+asyncpg://user:pass@postgres/gpt_sovits
redis_url: redis://redis:6379/0
celery_broker_url: redis://redis:6379/1
s3_endpoint: minio:9000

启动命令:

# 使用docker-compose启动所有服务
docker-compose -f docker-compose.server.yml up -d

docker-compose.server.yml:

version: '3.8'

services:
  api:
    build: .
    ports:
      - "8000:8000"
    depends_on:
      - postgres
      - redis
      - minio
    environment:
      - DEPLOYMENT_MODE=server
      - DATABASE_URL=postgresql+asyncpg://user:pass@postgres/gpt_sovits
      - REDIS_URL=redis://redis:6379/0
      
  celery-worker:
    build: .
    command: celery -A app.workers.celery_worker worker --loglevel=info --concurrency=2
    depends_on:
      - redis
      - postgres
    environment:
      - DEPLOYMENT_MODE=server
    deploy:
      replicas: 2  # 多个Worker
      
  postgres:
    image: postgres:15
    volumes:
      - postgres_data:/var/lib/postgresql/data
    environment:
      POSTGRES_PASSWORD: password
      
  redis:
    image: redis:7-alpine
    
  minio:
    image: minio/minio
    command: server /data --console-address ":9001"
    ports:
      - "9000:9000"
      - "9001:9001"
    volumes:
      - minio_data:/data

volumes:
  postgres_data:
  minio_data:

六、数据库方案对比

6.1 本地模式 - SQLite

Schema:

-- tasks表(Quick Mode 一键训练任务)
CREATE TABLE tasks (
    id TEXT PRIMARY KEY,
    exp_name TEXT NOT NULL,
    version TEXT NOT NULL,
    status TEXT NOT NULL,
    current_stage TEXT,
    overall_progress REAL,
    config TEXT,  -- JSON
    created_at TEXT,
    started_at TEXT,
    completed_at TEXT,
    error_message TEXT
);

-- experiments表(Advanced Mode 实验)
CREATE TABLE experiments (
    id TEXT PRIMARY KEY,
    exp_name TEXT NOT NULL,
    version TEXT NOT NULL,
    exp_root TEXT DEFAULT 'logs',
    gpu_numbers TEXT DEFAULT '0',
    is_half INTEGER DEFAULT 1,
    audio_file_id TEXT NOT NULL,
    status TEXT NOT NULL,
    created_at TEXT,
    updated_at TEXT,
    FOREIGN KEY (audio_file_id) REFERENCES files(id)
);

-- stages表(Advanced Mode 阶段状态)
CREATE TABLE stages (
    id TEXT PRIMARY KEY,
    experiment_id TEXT NOT NULL,
    stage_type TEXT NOT NULL,
    status TEXT DEFAULT 'pending',
    progress REAL DEFAULT 0,
    message TEXT,
    job_id TEXT,
    config TEXT,  -- JSON
    outputs TEXT,  -- JSON
    started_at TEXT,
    completed_at TEXT,
    error_message TEXT,
    FOREIGN KEY (experiment_id) REFERENCES experiments(id)
);

-- files表
CREATE TABLE files (
    id TEXT PRIMARY KEY,
    filename TEXT NOT NULL,
    storage_path TEXT NOT NULL,
    purpose TEXT,
    size_bytes INTEGER,
    uploaded_at TEXT
);

-- models表
CREATE TABLE models (
    id TEXT PRIMARY KEY,
    task_id TEXT,
    experiment_id TEXT,
    exp_name TEXT NOT NULL,
    model_type TEXT NOT NULL,
    storage_path TEXT NOT NULL,
    epoch INTEGER,
    created_at TEXT,
    FOREIGN KEY (task_id) REFERENCES tasks(id),
    FOREIGN KEY (experiment_id) REFERENCES experiments(id)
);

-- 索引
CREATE INDEX idx_tasks_status ON tasks(status);
CREATE INDEX idx_experiments_status ON experiments(status);
CREATE INDEX idx_stages_experiment ON stages(experiment_id);
CREATE INDEX idx_stages_status ON stages(status);

迁移管理: 使用简单的版本号文件 + SQL脚本

6.2 服务器模式 - PostgreSQL

使用SQLAlchemy + Alembic:

# app/models/db/models.py

from sqlalchemy import Column, String, Float, JSON, DateTime, Boolean, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class TaskModel(Base):
    """Quick Mode 任务模型"""
    __tablename__ = "tasks"
    
    id = Column(String, primary_key=True)
    exp_name = Column(String, nullable=False, index=True)
    version = Column(String, nullable=False)
    status = Column(String, nullable=False, index=True)
    current_stage = Column(String)
    overall_progress = Column(Float)
    config = Column(JSON)
    created_at = Column(DateTime, index=True)
    started_at = Column(DateTime)
    completed_at = Column(DateTime)
    error_message = Column(String)


class ExperimentModel(Base):
    """Advanced Mode 实验模型"""
    __tablename__ = "experiments"
    
    id = Column(String, primary_key=True)
    exp_name = Column(String, nullable=False, index=True)
    version = Column(String, nullable=False)
    exp_root = Column(String, default="logs")
    gpu_numbers = Column(String, default="0")
    is_half = Column(Boolean, default=True)
    audio_file_id = Column(String, ForeignKey("files.id"), nullable=False)
    status = Column(String, nullable=False, index=True)
    created_at = Column(DateTime, index=True)
    updated_at = Column(DateTime)
    
    # 关联
    stages = relationship("StageModel", back_populates="experiment")


class StageModel(Base):
    """Advanced Mode 阶段模型"""
    __tablename__ = "stages"
    
    id = Column(String, primary_key=True)
    experiment_id = Column(String, ForeignKey("experiments.id"), nullable=False)
    stage_type = Column(String, nullable=False)
    status = Column(String, default="pending", index=True)
    progress = Column(Float, default=0)
    message = Column(String)
    job_id = Column(String)
    config = Column(JSON)
    outputs = Column(JSON)
    started_at = Column(DateTime)
    completed_at = Column(DateTime)
    error_message = Column(String)
    
    # 关联
    experiment = relationship("ExperimentModel", back_populates="stages")

迁移: alembic upgrade head


七、任务队列方案对比

7.0 关键发现:训练Pipeline的执行模型

训练任务实际上是通过子进程执行的!

分析 training_pipeline/stages/training.py 发现,每个训练阶段都通过 subprocess.Popen 调用独立的Python脚本:

cmd = f'PYTHONPATH=.:GPT_SoVITS "{cfg.python_exec}" -s GPT_SoVITS/s2_train.py --config "{tmp_config_path}"'
self._process = self._run_command(cmd, wait=True)

这意味着

  1. GPU密集型训练计算发生在独立的子进程中,不受Python GIL限制
  2. FastAPI主进程仅需要"管理"这些子进程:启动、监控、停止
  3. ThreadPoolExecutor在这里只是一个"监工",等待阻塞的subprocess调用完成
  4. 更优雅的方案是使用 asyncio.subprocess,完全非阻塞

进程模型图

┌─────────────────────────────────────────────────────────────────┐
│                    FastAPI 主进程                                │
│  ┌──────────────────┐    ┌──────────────────────────────────┐  │
│  │ AsyncIO Event    │    │      AsyncTrainingManager        │  │
│  │ Loop             │◄───│  - 管理子进程生命周期              │  │
│  │                  │    │  - 异步读取stdout/stderr          │  │
│  │                  │    │  - 推送进度到SSE                   │  │
│  └──────────────────┘    └───────────────┬──────────────────┘  │
└─────────────────────────────────────────────┼───────────────────┘
                                              │ asyncio.create_subprocess_exec()
                    ┌─────────────────────────┼─────────────────────────┐
                    ▼                         ▼                         ▼
            ┌──────────────┐          ┌──────────────┐          ┌──────────────┐
            │ s2_train.py  │          │ s1_train.py  │          │ inference.py │
            │ (GPU训练)     │          │ (GPU训练)     │          │ (推理)       │
            └──────────────┘          └──────────────┘          └──────────────┘

7.0.1 进度追踪能力分析

分析 GPT_SoVITS/s2_train.py 发现,训练脚本的输出格式如下:

输出类型 输出位置 示例 可追踪性
Epoch进度 logger → stdout "====> Epoch: 5" ✅ 可解析
训练百分比 logger → stdout "Train Epoch: 1 [50.0%]" ✅ 可解析
Loss信息 logger → stdout [0.23, 0.45, ...] ✅ 可解析
Batch进度条 tqdm → stderr `45% ████▌
模型保存 logger → stdout "saving ckpt xxx_e5:..." ✅ 可解析

当前问题

  1. ❌ 输出不是JSON格式,需要正则表达式解析
  2. ❌ tqdm进度条格式复杂,难以精确解析
  3. ❌ 没有统一的进度通信协议

解决方案:修改训练脚本,添加JSON格式的进度输出

# 在训练脚本中添加进度报告函数
import json
import sys

def report_progress(stage: str, epoch: int, total_epochs: int, 
                    batch: int = None, total_batches: int = None,
                    loss: dict = None, message: str = None):
    """输出JSON格式的进度信息到stdout,供管理器解析"""
    progress_info = {
        "type": "progress",
        "stage": stage,
        "epoch": epoch,
        "total_epochs": total_epochs,
        "progress": epoch / total_epochs * 100,
    }
    if batch is not None:
        progress_info["batch"] = batch
        progress_info["total_batches"] = total_batches
        progress_info["progress"] = (epoch - 1 + batch / total_batches) / total_epochs * 100
    if loss:
        progress_info["loss"] = loss
    if message:
        progress_info["message"] = message
    
    # 使用特殊前缀标识,便于解析
    print(f"##PROGRESS##{json.dumps(progress_info)}##", flush=True)

# 在训练循环中调用
for epoch in range(epoch_str, hps.train.epochs + 1):
    report_progress("SoVITS训练", epoch, hps.train.epochs, message=f"开始Epoch {epoch}")
    for batch_idx, data in enumerate(train_loader):
        # ... 训练代码 ...
        if batch_idx % 10 == 0:  # 每10个batch报告一次
            report_progress("SoVITS训练", epoch, hps.train.epochs, 
                           batch_idx, len(train_loader),
                           loss={"g_total": loss_gen_all.item()})

管理器端解析

async def _monitor_process_output(self, task_id: str, process):
    """解析子进程输出获取进度"""
    async for line in process.stdout:
        text = line.decode().strip()
        
        # 检测JSON进度标记
        if text.startswith("##PROGRESS##") and text.endswith("##"):
            json_str = text[12:-2]  # 提取JSON部分
            progress_info = json.loads(json_str)
            await self._send_progress(task_id, progress_info)
        
        # 兼容旧格式:正则解析
        elif "Train Epoch:" in text:
            match = re.search(r"Train Epoch: (\d+) \[(\d+\.?\d*)%\]", text)
            if match:
                epoch, percent = match.groups()
                await self._send_progress(task_id, {
                    "stage": "SoVITS训练",
                    "epoch": int(epoch),
                    "progress": float(percent),
                    "message": text
                })

7.0.2 任务控制能力分析

操作 实现方式 macOS支持 备注
终止(Kill) process.terminate() ✅ 完全支持 立即终止,可能丢失当前epoch
强制终止 process.kill() ✅ 完全支持 发送SIGKILL,强制停止
暂停(Pause) os.kill(pid, signal.SIGSTOP) ⚠️ 支持但有风险 GPU/CUDA状态可能异常
恢复(Resume) os.kill(pid, signal.SIGCONT) ⚠️ 需配合SIGSTOP 同上
优雅停止 需要训练脚本配合 ❌ 当前不支持 需要修改训练脚本

优雅停止方案

需要修改训练脚本以支持信号处理:

# 在训练脚本开头添加
import signal
import json

should_stop = False
should_pause = False

def handle_stop_signal(signum, frame):
    """收到SIGUSR1时,完成当前epoch后停止"""
    global should_stop
    should_stop = True
    print(json.dumps({"type": "signal", "message": "收到停止信号,将在当前epoch结束后停止"}))

def handle_pause_signal(signum, frame):
    """收到SIGUSR2时,暂停训练"""
    global should_pause
    should_pause = not should_pause
    status = "暂停" if should_pause else "继续"
    print(json.dumps({"type": "signal", "message": f"训练已{status}"}))

signal.signal(signal.SIGUSR1, handle_stop_signal)
signal.signal(signal.SIGUSR2, handle_pause_signal)

# 在训练循环中检查
for epoch in range(epoch_str, hps.train.epochs + 1):
    # 检查暂停
    while should_pause:
        time.sleep(1)
    
    # 检查停止
    if should_stop:
        print(json.dumps({"type": "progress", "status": "stopped", 
                          "message": f"训练在Epoch {epoch}结束后停止"}))
        # 保存checkpoint
        save_checkpoint(...)
        break
    
    # ... 正常训练 ...

管理器端控制

class AsyncTrainingManager:
    async def pause(self, task_id: str) -> bool:
        """暂停任务"""
        if task_id in self.running_processes:
            process = self.running_processes[task_id]
            os.kill(process.pid, signal.SIGUSR2)
            return True
        return False
    
    async def graceful_stop(self, task_id: str) -> bool:
        """优雅停止(完成当前epoch后停止)"""
        if task_id in self.running_processes:
            process = self.running_processes[task_id]
            os.kill(process.pid, signal.SIGUSR1)
            return True
        return False
    
    async def force_stop(self, task_id: str) -> bool:
        """强制停止"""
        if task_id in self.running_processes:
            process = self.running_processes[task_id]
            process.terminate()
            try:
                await asyncio.wait_for(process.wait(), timeout=5.0)
            except asyncio.TimeoutError:
                process.kill()
            return True
        return False

暂停训练的风险

  • macOS上使用SIGSTOP/SIGCONT暂停进程可能导致GPU资源锁定
  • 长时间暂停后恢复,CUDA上下文可能失效
  • 推荐使用:保存checkpoint后终止,需要时从checkpoint恢复

7.1 本地模式 - 任务管理方案 ✅ 已实现

选择任务管理方案时,需要考虑:

  • 执行模型:训练已经是子进程,任务管理器只需监控
  • 交付形态:PyInstaller打包需要单主进程
  • 简洁性:asyncio.subprocess 比 ThreadPool 更简洁

Option 1: asyncio.subprocess ⭐⭐ 推荐(所有场景)✅ 已选用并实现

实现文件: app/adapters/local/task_queue.py

核心设计思想

  • 利用 asyncio.create_subprocess_exec() 异步启动训练子进程
  • 完全非阻塞,与 FastAPI 的异步模型完美契合
  • 无需 ThreadPool,架构更简洁
  • 异步读取子进程输出,实时解析进度
# 优点:
- 纯asyncio,与FastAPI完美集成
- 无需ThreadPool,无线程管理开销
- 异步监控多个子进程
- 更简洁的代码结构
- 完全兼容PyInstaller打包

# 缺点:
- 需要修改Pipeline执行方式(从同步改为异步)
- 进度解析需要从stdout/stderr提取

完整实现

# app/adapters/local/async_task_manager.py

import asyncio
import json
import os
import sys
import uuid
from datetime import datetime
from typing import Dict, Optional, AsyncGenerator, List
from pathlib import Path
import aiosqlite

from app.adapters.base import TaskQueueAdapter


class AsyncTrainingManager(TaskQueueAdapter):
    """
    基于asyncio.subprocess的异步任务管理器。
    
    特点:
    1. 使用asyncio.create_subprocess_exec()异步启动训练子进程
    2. 完全非阻塞,与FastAPI异步模型完美契合
    3. SQLite持久化任务状态,支持应用重启后恢复
    4. 实时解析子进程输出获取进度
    """
    
    def __init__(self, db_path: str = "./data/tasks.db"):
        self.db_path = db_path
        
        # 运行时状态
        self.running_processes: Dict[str, asyncio.subprocess.Process] = {}  # task_id -> Process
        self.progress_channels: Dict[str, asyncio.Queue] = {}  # task_id -> Queue
        
        # 初始化数据库
        self._init_db_sync()
    
    def _init_db_sync(self):
        """同步初始化数据库(启动时调用)"""
        import sqlite3
        Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
        
        with sqlite3.connect(self.db_path) as conn:
            conn.execute('''
                CREATE TABLE IF NOT EXISTS task_queue (
                    job_id TEXT PRIMARY KEY,
                    task_id TEXT NOT NULL,
                    config TEXT NOT NULL,
                    status TEXT DEFAULT 'queued',
                    current_stage TEXT,
                    progress REAL DEFAULT 0,
                    created_at TEXT,
                    started_at TEXT,
                    completed_at TEXT,
                    error_message TEXT
                )
            ''')
            conn.execute('CREATE INDEX IF NOT EXISTS idx_task_queue_status ON task_queue(status)')
            conn.commit()
    
    async def enqueue(self, task_id: str, config: Dict, priority: str = "normal") -> str:
        """将任务加入队列并异步启动"""
        job_id = str(uuid.uuid4())
        
        # 持久化到SQLite
        async with aiosqlite.connect(self.db_path) as db:
            await db.execute(
                '''INSERT INTO task_queue (job_id, task_id, config, status, created_at)
                   VALUES (?, ?, ?, 'queued', ?)''',
                (job_id, task_id, json.dumps(config), datetime.utcnow().isoformat())
            )
            await db.commit()
        
        # 创建进度队列
        self.progress_channels[task_id] = asyncio.Queue()
        
        # 异步启动训练任务
        asyncio.create_task(self._run_training_async(job_id, task_id, config))
        
        return job_id
    
    async def _run_training_async(self, job_id: str, task_id: str, config: Dict):
        """异步执行训练Pipeline"""
        try:
            await self._update_status(job_id, 'running', started_at=datetime.utcnow().isoformat())
            await self._send_progress(task_id, {"status": "running", "message": "训练启动中..."})
            
            # 构建训练脚本命令
            # 这里调用一个包装脚本,它会执行完整的Pipeline并输出JSON格式的进度
            script_path = self._get_pipeline_script_path()
            config_path = await self._write_config_file(task_id, config)
            
            # 创建子进程
            process = await asyncio.create_subprocess_exec(
                sys.executable, script_path,
                '--config', config_path,
                '--task-id', task_id,
                stdout=asyncio.subprocess.PIPE,
                stderr=asyncio.subprocess.PIPE,
                env={**os.environ, 'PYTHONPATH': '.:GPT_SoVITS'}
            )
            
            self.running_processes[task_id] = process
            
            # 异步读取stdout并解析进度
            await self._monitor_process_output(task_id, process)
            
            # 等待进程完成
            returncode = await process.wait()
            
            if returncode == 0:
                await self._update_status(job_id, 'completed', completed_at=datetime.utcnow().isoformat())
                await self._send_progress(task_id, {"status": "completed", "progress": 100, "message": "训练完成"})
            else:
                stderr = await process.stderr.read()
                error_msg = stderr.decode() if stderr else f"Process exited with code {returncode}"
                await self._update_status(job_id, 'failed', error_message=error_msg)
                await self._send_progress(task_id, {"status": "failed", "error": error_msg})
                
        except asyncio.CancelledError:
            await self._update_status(job_id, 'cancelled')
            await self._send_progress(task_id, {"status": "cancelled", "message": "任务已取消"})
        except Exception as e:
            await self._update_status(job_id, 'failed', error_message=str(e))
            await self._send_progress(task_id, {"status": "failed", "error": str(e)})
        finally:
            self.running_processes.pop(task_id, None)
            # 清理临时配置文件
            await self._cleanup_config_file(task_id)
    
    async def _monitor_process_output(self, task_id: str, process: asyncio.subprocess.Process):
        """异步监控子进程输出并解析进度"""
        async def read_stream(stream, is_stderr=False):
            while True:
                line = await stream.readline()
                if not line:
                    break
                    
                text = line.decode().strip()
                if not text:
                    continue
                
                # 尝试解析JSON格式的进度信息
                if text.startswith('{') and text.endswith('}'):
                    try:
                        progress_info = json.loads(text)
                        await self._send_progress(task_id, progress_info)
                        
                        # 同时更新数据库中的进度
                        if 'progress' in progress_info or 'stage' in progress_info:
                            await self._update_progress_in_db(task_id, progress_info)
                    except json.JSONDecodeError:
                        pass
                elif is_stderr:
                    # stderr输出作为日志
                    await self._send_progress(task_id, {"type": "log", "level": "error", "message": text})
        
        # 并发读取stdout和stderr
        await asyncio.gather(
            read_stream(process.stdout, is_stderr=False),
            read_stream(process.stderr, is_stderr=True)
        )
    
    async def _send_progress(self, task_id: str, progress_info: Dict):
        """发送进度到订阅队列"""
        if task_id in self.progress_channels:
            await self.progress_channels[task_id].put(progress_info)
    
    async def _update_status(self, job_id: str, status: str, **kwargs):
        """更新任务状态"""
        async with aiosqlite.connect(self.db_path) as db:
            updates = ["status = ?"]
            values = [status]
            
            for key, value in kwargs.items():
                updates.append(f"{key} = ?")
                values.append(value)
            
            values.append(job_id)
            await db.execute(
                f"UPDATE task_queue SET {', '.join(updates)} WHERE job_id = ?",
                values
            )
            await db.commit()
    
    async def _update_progress_in_db(self, task_id: str, progress_info: Dict):
        """更新数据库中的进度"""
        async with aiosqlite.connect(self.db_path) as db:
            updates = []
            values = []
            
            if 'progress' in progress_info:
                updates.append("progress = ?")
                values.append(progress_info['progress'])
            if 'stage' in progress_info:
                updates.append("current_stage = ?")
                values.append(progress_info['stage'])
            
            if updates:
                values.append(task_id)
                await db.execute(
                    f"UPDATE task_queue SET {', '.join(updates)} WHERE task_id = ?",
                    values
                )
                await db.commit()
    
    async def get_status(self, job_id: str) -> Dict:
        """获取任务状态"""
        async with aiosqlite.connect(self.db_path) as db:
            db.row_factory = aiosqlite.Row
            async with db.execute(
                "SELECT * FROM task_queue WHERE job_id = ?", (job_id,)
            ) as cursor:
                row = await cursor.fetchone()
                if row:
                    return dict(row)
        return {"status": "not_found"}
    
    async def cancel(self, job_id: str) -> bool:
        """取消任务"""
        # 查找task_id
        async with aiosqlite.connect(self.db_path) as db:
            async with db.execute(
                "SELECT task_id FROM task_queue WHERE job_id = ?", (job_id,)
            ) as cursor:
                row = await cursor.fetchone()
                if not row:
                    return False
                task_id = row[0]
        
        # 终止进程
        if task_id in self.running_processes:
            process = self.running_processes[task_id]
            process.terminate()
            
            # 等待进程终止
            try:
                await asyncio.wait_for(process.wait(), timeout=5.0)
            except asyncio.TimeoutError:
                process.kill()
            
            await self._update_status(job_id, 'cancelled')
            return True
        
        return False
    
    async def subscribe_progress(self, task_id: str) -> AsyncGenerator[Dict, None]:
        """订阅任务进度(SSE流)"""
        if task_id not in self.progress_channels:
            self.progress_channels[task_id] = asyncio.Queue()
        
        queue = self.progress_channels[task_id]
        
        while True:
            try:
                progress = await asyncio.wait_for(queue.get(), timeout=30.0)
                yield progress
                
                if progress.get('status') in ['completed', 'failed', 'cancelled']:
                    break
            except asyncio.TimeoutError:
                # 发送心跳保持连接
                yield {"type": "heartbeat", "timestamp": datetime.utcnow().isoformat()}
    
    async def recover_pending_tasks(self) -> int:
        """
        应用重启后恢复未完成的任务。
        
        注意:由于子进程在应用重启后已经终止,这里只能:
        1. 将running状态的任务标记为interrupted
        2. 可选择重新启动queued状态的任务
        """
        async with aiosqlite.connect(self.db_path) as db:
            # 将running状态的任务标记为interrupted(需要用户决定是否重试)
            await db.execute(
                "UPDATE task_queue SET status = 'interrupted' WHERE status = 'running'"
            )
            await db.commit()
            
            # 重新启动queued状态的任务
            db.row_factory = aiosqlite.Row
            async with db.execute(
                "SELECT * FROM task_queue WHERE status = 'queued' ORDER BY created_at"
            ) as cursor:
                queued_tasks = await cursor.fetchall()
        
        for task in queued_tasks:
            task_id = task['task_id']
            config = json.loads(task['config'])
            job_id = task['job_id']
            
            self.progress_channels[task_id] = asyncio.Queue()
            asyncio.create_task(self._run_training_async(job_id, task_id, config))
        
        return len(queued_tasks)
    
    def _get_pipeline_script_path(self) -> str:
        """获取Pipeline执行脚本路径"""
        # 这个脚本会封装TrainingPipeline,并输出JSON格式的进度
        return os.path.join(os.path.dirname(__file__), '..', '..', 'scripts', 'run_pipeline.py')
    
    async def _write_config_file(self, task_id: str, config: Dict) -> str:
        """写入临时配置文件"""
        config_dir = Path(self.db_path).parent / 'configs'
        config_dir.mkdir(exist_ok=True)
        config_path = config_dir / f"{task_id}.json"
        
        async with aiosqlite.connect(self.db_path):  # 确保目录可写
            pass
        
        with open(config_path, 'w') as f:
            json.dump(config, f)
        
        return str(config_path)
    
    async def _cleanup_config_file(self, task_id: str):
        """清理临时配置文件"""
        config_path = Path(self.db_path).parent / 'configs' / f"{task_id}.json"
        if config_path.exists():
            config_path.unlink()

Option 2: ThreadPoolExecutor + SQLite持久化(备选方案)

如果不想修改现有的Pipeline执行方式,可以继续使用ThreadPool包装同步调用:

# 优点:
- 无需修改现有Pipeline代码
- 标准库,依赖极少
- 实现简单

# 缺点:
- ThreadPool线程仅用于等待阻塞的subprocess
- 资源利用不够优雅
- 不是真正的异步

此方案使用 concurrent.futures.ThreadPoolExecutor 将同步的 subprocess 调用包装为异步操作。 虽然功能可行,但与 asyncio.subprocess 相比增加了不必要的线程开销。

# 简易实现逻辑
from concurrent.futures import ThreadPoolExecutor

class ThreadPoolAdapter(TaskQueueAdapter):
    def __init__(self):
        self.executor = ThreadPoolExecutor(max_workers=1)
        
    async def enqueue(self, task_id, config, priority="normal"):
        job_id = str(uuid.uuid4())
        # 在线程中执行同步的 run_pipeline
        self.executor.submit(self._run_sync, task_id, config)
        return job_id
        
    def _run_sync(self, task_id, config):
        # 同步执行 Pipeline
        pipeline = TrainingPipeline(config)
        pipeline.run()

Option 3: Huey(仅适合开发模式,不推荐用于PyInstaller打包)

Huey需要独立的consumer进程,不适合PyInstaller打包和Electron集成场景。 仅在纯Python开发模式下使用。

# 安装
pip install huey

# 配置
from huey import SqliteHuey

huey = SqliteHuey('gpt_sovits', filename='./data/tasks.db')

@huey.task()
def execute_training_pipeline(task_id, config):
    # 执行训练
    pass

# 优点:
- 轻量级(~1000行代码)
- 支持SQLite后端(持久化)
- 支持任务重试、定时任务
- 支持优先级队列
- 无需额外服务

# 缺点:
- 需要独立的huey_consumer进程
- 不兼容PyInstaller单文件打包
- 功能不如Celery丰富
- 社区较小

7.2 服务器模式 - Celery [Phase 2]

注意: 此部分为 Phase 2 服务器模式的设计,当前阶段优先实现本地模式。

# app/workers/celery_worker.py

from celery import Celery
from app.core.config import settings

celery_app = Celery(
    'gpt_sovits',
    broker=settings.CELERY_BROKER_URL,
    backend=settings.CELERY_RESULT_BACKEND
)

celery_app.conf.update(
    task_serializer='json',
    accept_content=['json'],
    result_serializer='json',
    timezone='UTC',
    task_routes={
        'app.workers.celery_worker.execute_training_pipeline': {'queue': 'training'},
        'app.workers.celery_worker.execute_inference': {'queue': 'inference'}
    }
)

@celery_app.task(bind=True, max_retries=3)
def execute_training_pipeline(self, task_id: str, config: dict):
    """执行训练Pipeline(与Huey版本类似)"""
    # 实现逻辑同上
    pass

八、完整对比表

维度 本地开发模式 (macOS) PyInstaller/Electron模式 服务器模式 (Linux)
数据库 SQLite (单文件) SQLite (单文件) PostgreSQL (集群)
任务管理 asyncio.subprocess ⭐ asyncio.subprocess ⭐ Celery + Redis
执行模型 子进程(s2_train.py等) 子进程(s2_train.py等) 分布式Worker
文件存储 本地文件系统 本地文件系统 MinIO/S3
进度管理 stdout解析 + asyncio.Queue stdout解析 + asyncio.Queue Redis Pub/Sub
并发能力 1-2个任务 1个任务(串行) 无限(水平扩展)
依赖服务 0 (全in-one) 0 (全in-one) 3+ (PostgreSQL, Redis, MinIO)
启动命令 uvicorn app.main:app Electron启动Python子进程 docker-compose up
适用场景 开发调试 桌面应用分发 生产环境、多用户
部署复杂度 ⭐⭐ ⭐⭐⭐⭐
打包支持 不需要 PyInstaller单文件 Docker镜像
维护成本 中等

九、推荐实现路径

Phase 1: 本地模式MVP

1.1 架构设计与 Schema 定义 ✅ 已完成

任务 状态 说明
API 架构设计 ✅ 完成 双模式设计(Quick Mode + Advanced Mode)
Pydantic Schema 设计 ✅ 完成 development.md 中完整定义
数据库 Schema 设计 ✅ 完成 tasks, experiments, stages 表结构
阶段参数 Schema 设计 ✅ 完成 AudioSliceParams, SoVITSTrainParams 等

1.2 核心基础设施 ✅ 已完成

任务 状态 实现文件
适配器抽象基类 ✅ 完成 app/adapters/base.py - TaskQueueAdapter, ProgressAdapter
AsyncTrainingManager ✅ 完成 app/adapters/local/task_queue.py - 完整实现
配置管理模块 ✅ 完成 app/core/config.py - Settings, 路径常量
领域模型 ✅ 完成 app/models/domain.py - Task, TaskStatus, ProgressInfo
Pipeline 包装脚本 ✅ 完成 app/scripts/run_pipeline.py - 子进程执行器

AsyncTrainingManager 已实现功能:

  • ✅ 任务入队与异步执行 (enqueue)
  • ✅ 子进程管理 (asyncio.create_subprocess_exec)
  • ✅ 进度解析与推送 (_monitor_process_output)
  • ✅ 任务状态查询 (get_status, get_status_by_task_id)
  • ✅ 任务取消 (cancel)
  • ✅ 进度订阅 SSE 流 (subscribe_progress)
  • ✅ 任务列表查询 (list_tasks)
  • ✅ 任务恢复机制 (recover_pending_tasks)
  • ✅ 旧任务清理 (cleanup_old_tasks)

1.3 Pydantic Schema 文件 ✅ 已完成

任务 状态 说明
app/models/schemas/common.py ✅ 完成 SuccessResponse, ErrorResponse, PaginatedResponse
app/models/schemas/task.py ✅ 完成 QuickModeOptions, QuickModeRequest, TaskResponse, TaskListResponse
app/models/schemas/experiment.py ✅ 完成 ExperimentCreate, StageStatus, 各阶段参数类等
app/models/schemas/file.py ✅ 完成 FileMetadata, FileUploadResponse, FileListResponse

1.4 存储与数据库适配器 ✅ 已完成

任务 状态 说明
StorageAdapter 抽象类 ✅ 完成 app/adapters/base.py - 文件存储接口
DatabaseAdapter 抽象类 ✅ 完成 app/adapters/base.py - 数据库操作接口
LocalStorageAdapter ✅ 完成 app/adapters/local/storage.py - 本地文件系统存储
SQLiteAdapter ✅ 完成 app/adapters/local/database.py - SQLite 数据库适配器
LocalProgressAdapter ✅ 完成 app/adapters/local/progress.py - 内存进度管理

LocalStorageAdapter 已实现功能:

  • ✅ 文件上传/下载 (upload_file, download_file)
  • ✅ 文件删除 (delete_file)
  • ✅ 元数据管理 (.meta.json 文件)
  • ✅ 文件列表查询 (list_files)
  • ✅ 音频信息提取(时长、采样率)

SQLiteAdapter 已实现功能:

  • ✅ Task CRUD (Quick Mode)
  • ✅ Experiment CRUD (Advanced Mode)
  • ✅ Stage 状态管理
  • ✅ File 记录管理
  • ✅ 自动表结构初始化

LocalProgressAdapter 已实现功能:

  • ✅ 进度更新与存储 (update_progress)
  • ✅ 订阅者模式 (subscribe)
  • ✅ 多订阅者支持
  • ✅ 心跳机制

1.5 API 端点 ✅ 已完成

任务 状态 说明
Quick Mode API (/tasks) ✅ 已实现 app/api/v1/endpoints/tasks.py
Advanced Mode API (/experiments) ✅ 已实现 app/api/v1/endpoints/experiments.py
文件管理 API (/files) ✅ 已实现 app/api/v1/endpoints/files.py
阶段模板 API (/stages) ✅ 已实现 app/api/v1/endpoints/stages.py
路由注册 ✅ 已实现 app/api/v1/router.py
FastAPI 入口 ✅ 已实现 app/main.py
适配器工厂 ✅ 已实现 app/core/adapters.py
依赖注入 ✅ 已实现 app/api/deps.py

API 端点已实现功能:

  • ✅ Quick Mode: 创建任务、任务列表、任务详情、取消任务、SSE 进度订阅
  • ✅ Advanced Mode: 创建实验、实验列表、实验详情、更新/删除实验、执行阶段、阶段状态、取消阶段、SSE 阶段进度
  • ✅ 文件管理: 上传文件、文件列表、下载文件、删除文件
  • ✅ 阶段模板: 预设列表、阶段参数模板

1.6 服务层 ✅ 已完成

任务 状态 说明
TaskService ✅ 已实现 app/services/task_service.py
ExperimentService ✅ 已实现 app/services/experiment_service.py
FileService ✅ 已实现 app/services/file_service.py

服务层已实现功能:

  • ✅ TaskService: 创建一键训练任务、质量预设配置、任务状态管理、进度订阅
  • ✅ ExperimentService: 实验 CRUD、阶段依赖检查、阶段执行/取消、进度订阅
  • ✅ FileService: 文件上传/下载、元数据管理、音频信息提取

1.7 测试与验证

任务 状态 说明
Quick Mode 端到端测试 🔲 待开始 上传音频 → 训练完成
Advanced Mode 分阶段测试 🔲 待开始 逐阶段执行 + 重新执行
任务取消/恢复测试 🔲 待开始 验证任务生命周期管理

Phase 2: Electron 集成准备

任务 状态 说明
任务持久化和恢复机制 🔲 待开始 应用重启后恢复任务状态
PyInstaller 打包配置 🔲 待开始 .spec 文件配置
Electron 进程管理模块 🔲 待开始 spawn/kill Python 进程
IPC 通信层 🔲 待开始 HTTP API 或 WebSocket
macOS 签名和公证 🔲 待开始 可选,用于分发

Phase 3: 服务器模式

任务 状态 说明
PostgreSQL 适配器 🔲 待开始 SQLAlchemy + Alembic
Celery 任务队列适配器 🔲 待开始 分布式任务执行
S3/MinIO 存储适配器 🔲 待开始 对象存储
Redis 进度管理适配器 🔲 待开始 Pub/Sub 进度推送
认证授权 🔲 待开始 JWT / API Key
监控告警 🔲 待开始 Prometheus + Grafana
Docker 部署配置 🔲 待开始 docker-compose.yml

Phase 4: 增强功能

任务 状态 说明
模型版本管理 🔲 待开始 多版本模型存储和切换
批量推理 🔲 待开始 批量 TTS 生成
定时任务 🔲 待开始 计划训练任务
Webhook 通知 🔲 待开始 训练完成回调
训练数据集管理 🔲 待开始 数据集版本控制

十、关键代码示例

10.1 启动文件(自动识别模式)

# app/main.py

from fastapi import FastAPI
from app.core.config import settings
from app.api.v1.router import api_router

app = FastAPI(title=settings.PROJECT_NAME)

@app.on_event("startup")
async def startup_event():
    print(f"Starting in {settings.DEPLOYMENT_MODE.upper()} mode")
    
    if settings.DEPLOYMENT_MODE == "local":
        print("Using SQLite + Huey + Local FileSystem")
        # 启动Huey consumer(如果在同一进程)
        # 或者提示用户启动: huey_consumer app.workers.local_worker.huey
    else:
        print("Using PostgreSQL + Celery + MinIO")
        # 初始化数据库连接池
        # 预热Redis连接

app.include_router(api_router, prefix=settings.API_V1_PREFIX)

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

10.2 环境变量配置

.env.local:

DEPLOYMENT_MODE=local
LOCAL_STORAGE_PATH=./data/files
SQLITE_PATH=./data/app.db
LOCAL_MAX_WORKERS=1

.env.server:

DEPLOYMENT_MODE=server
DATABASE_URL=postgresql+asyncpg://user:pass@localhost/gpt_sovits
REDIS_URL=redis://localhost:6379/0
CELERY_BROKER_URL=redis://localhost:6379/1
S3_ENDPOINT=localhost:9000
S3_ACCESS_KEY=minioadmin
S3_SECRET_KEY=minioadmin

十一、Electron集成指南

11.1 架构概览

┌─────────────────────────────────────────────────────────────┐
│                    Electron Main Process                    │
│  ┌─────────────────┐     ┌──────────────────────────────┐  │
│  │ Process Manager │────▶│ Python (PyInstaller Bundle)  │  │
│  └─────────────────┘     │  ┌──────────────────────────┐│  │
│          │               │  │   FastAPI HTTP Server    ││  │
│          │               │  │   + ThreadPool Queue     ││  │
│          │               │  │   + SQLite Database      ││  │
│          │               │  └──────────────────────────┘│  │
│          │               └──────────────────────────────┘  │
│          │                            │                     │
│  ┌───────▼─────────────────────────────▼─────────────────┐ │
│  │              Renderer Process (Vue/React)             │ │
│  │         HTTP API / SSE Progress Subscription          │ │
│  └───────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘

11.2 Python进程管理(Electron侧)

// electron/python-manager.js

const { spawn } = require('child_process');
const path = require('path');
const http = require('http');

class PythonProcessManager {
  constructor() {
    this.pythonProcess = null;
    this.apiPort = 8765;
    this.isReady = false;
  }

  /**
   * 启动Python后端进程
   */
  start() {
    return new Promise((resolve, reject) => {
      const pythonPath = this.getPythonPath();
      
      this.pythonProcess = spawn(pythonPath, [], {
        env: {
          ...process.env,
          DEPLOYMENT_MODE: 'local',
          API_PORT: this.apiPort.toString(),
          // 使用Electron的userData目录存储数据
          DATA_PATH: path.join(app.getPath('userData'), 'training-data')
        },
        stdio: ['pipe', 'pipe', 'pipe']
      });

      this.pythonProcess.stdout.on('data', (data) => {
        console.log(`[Python] ${data}`);
        // 检测服务启动完成
        if (data.toString().includes('Uvicorn running on')) {
          this.isReady = true;
          resolve();
        }
      });

      this.pythonProcess.stderr.on('data', (data) => {
        console.error(`[Python Error] ${data}`);
      });

      this.pythonProcess.on('close', (code) => {
        console.log(`Python process exited with code ${code}`);
        this.isReady = false;
      });

      // 超时处理
      setTimeout(() => {
        if (!this.isReady) {
          reject(new Error('Python server startup timeout'));
        }
      }, 30000);
    });
  }

  /**
   * 获取打包后的Python可执行文件路径
   */
  getPythonPath() {
    if (process.env.NODE_ENV === 'development') {
      return 'python';  // 开发模式使用系统Python
    }
    
    // 生产模式使用PyInstaller打包的可执行文件
    const resourcesPath = process.resourcesPath;
    if (process.platform === 'darwin') {
      return path.join(resourcesPath, 'python', 'gpt-sovits-api');
    } else if (process.platform === 'win32') {
      return path.join(resourcesPath, 'python', 'gpt-sovits-api.exe');
    }
    return path.join(resourcesPath, 'python', 'gpt-sovits-api');
  }

  /**
   * 等待API服务就绪
   */
  async waitForReady(maxRetries = 30) {
    for (let i = 0; i < maxRetries; i++) {
      try {
        await this.healthCheck();
        return true;
      } catch {
        await new Promise(r => setTimeout(r, 1000));
      }
    }
    return false;
  }

  /**
   * 健康检查
   */
  healthCheck() {
    return new Promise((resolve, reject) => {
      http.get(`http://localhost:${this.apiPort}/health`, (res) => {
        if (res.statusCode === 200) resolve();
        else reject();
      }).on('error', reject);
    });
  }

  /**
   * 停止Python进程
   */
  stop() {
    if (this.pythonProcess) {
      this.pythonProcess.kill('SIGTERM');
      this.pythonProcess = null;
      this.isReady = false;
    }
  }

  /**
   * 获取API基础URL
   */
  getApiBaseUrl() {
    return `http://localhost:${this.apiPort}`;
  }
}

module.exports = PythonProcessManager;

11.3 PyInstaller打包配置

# gpt-sovits-api.spec

# -*- mode: python ; coding: utf-8 -*-

block_cipher = None

a = Analysis(
    ['app/main.py'],
    pathex=[],
    binaries=[],
    datas=[
        # 包含预训练模型
        ('pretrained_models', 'pretrained_models'),
        # 包含配置文件
        ('config', 'config'),
    ],
    hiddenimports=[
        'uvicorn.logging',
        'uvicorn.loops',
        'uvicorn.loops.auto',
        'uvicorn.protocols',
        'uvicorn.protocols.http',
        'uvicorn.protocols.http.auto',
        'uvicorn.protocols.websockets',
        'uvicorn.protocols.websockets.auto',
        'uvicorn.lifespan',
        'uvicorn.lifespan.on',
        'aiosqlite',
        'torch',
        'torchaudio',
        # 添加所有需要的隐式导入
    ],
    hookspath=[],
    hooksconfig={},
    runtime_hooks=[],
    excludes=[
        'tkinter',
        'matplotlib',
        'IPython',
        'jupyter',
    ],
    win_no_prefer_redirects=False,
    win_private_assemblies=False,
    cipher=block_cipher,
    noarchive=False,
)

pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

exe = EXE(
    pyz,
    a.scripts,
    a.binaries,
    a.zipfiles,
    a.datas,
    [],
    name='gpt-sovits-api',
    debug=False,
    bootloader_ignore_signals=False,
    strip=False,
    upx=True,
    upx_exclude=[],
    runtime_tmpdir=None,
    console=True,  # 设为False隐藏控制台
    disable_windowed_traceback=False,
    argv_emulation=False,
    target_arch=None,
    codesign_identity=None,
    entitlements_file=None,
)

11.4 适配器工厂更新(支持Electron模式)

# app/core/adapters.py

from app.core.config import settings
import os

class AdapterFactory:
    @staticmethod
    def create_task_queue_adapter():
        # PyInstaller/Electron模式下强制使用ThreadPool
        if settings.DEPLOYMENT_MODE == "local":
            from app.adapters.local.task_queue import LocalTaskQueueAdapter
            
            # 根据环境确定数据路径
            data_path = os.environ.get('DATA_PATH', './data')
            db_path = os.path.join(data_path, 'tasks.db')
            
            return LocalTaskQueueAdapter(
                max_workers=settings.LOCAL_MAX_WORKERS,
                db_path=db_path
            )
        else:
            from app.adapters.server.task_queue import CeleryTaskQueueAdapter
            return CeleryTaskQueueAdapter(
                broker_url=settings.CELERY_BROKER_URL,
                backend_url=settings.CELERY_RESULT_BACKEND
            )

11.5 打包和分发检查清单

## macOS打包检查清单

- [ ] 签名Python可执行文件(如需分发到App Store外)
- [ ] 处理Gatekeeper问题(首次运行需要右键打开)
- [ ] 测试在干净的系统上启动
- [ ] 验证模型文件正确打包
- [ ] 测试任务恢复机制
- [ ] 验证进度SSE流正常工作
- [ ] 测试Electron退出时Python进程正确清理

## 目录结构

YourApp.app/
├── Contents/
│   ├── MacOS/
│   │   └── YourApp          # Electron主程序
│   ├── Resources/
│   │   ├── python/
│   │   │   └── gpt-sovits-api    # PyInstaller打包的Python
│   │   ├── pretrained_models/     # 预训练模型
│   │   └── ...
│   └── Info.plist

总结

此架构设计核心思想:

  1. 统一接口: API层和业务逻辑层完全统一
  2. 适配器模式: 底层存储/队列/缓存通过适配器切换
  3. 配置驱动: 通过环境变量控制部署模式
  4. 渐进式: 先实现本地版本(快速验证),再扩展到服务器版本
  5. 零依赖本地部署: 本地模式无需Docker、Redis、PostgreSQL
  6. 子进程执行模型: 训练任务通过subprocess执行,主进程仅管理
  7. asyncio.subprocess推荐: 完全非阻塞,与FastAPI完美契合

推荐起步:

  • 所有本地场景: 使用 asyncio.subprocess + SQLite 方案(AsyncTrainingManager
  • Electron桌面应用: 同上,完全兼容PyInstaller打包
  • 服务器生产环境: 使用Celery + Redis实现分布式任务队列

关键洞察:既然训练Pipeline已经通过subprocess调用独立的Python脚本, 那么使用 asyncio.create_subprocess_exec() 是最自然的选择, 无需引入ThreadPool的额外复杂性。