|
|
from typing import Dict |
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
from torch import nn, Tensor |
|
|
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig |
|
|
from peft import LoraConfig, get_peft_model, PeftModel |
|
|
from src.model.processor import QWEN2_5_VL_TOKENSELECTION |
|
|
from src.arguments import ModelArguments, TrainingArguments |
|
|
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \ |
|
|
backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V |
|
|
|
|
|
from src.arguments import ModelArguments |
|
|
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \ |
|
|
QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI |
|
|
from src.model.baseline_backbone.colpali import ColPali |
|
|
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL |
|
|
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL |
|
|
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL |
|
|
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM |
|
|
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration |
|
|
|
|
|
from transformers import modeling_utils |
|
|
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: |
|
|
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise'] |
|
|
|
|
|
def _ensure_pad_token_id_on_model(base_model): |
|
|
""" |
|
|
Ensure base_model.config.pad_token_id is a valid int. |
|
|
Fallback order: config.pad_token_id -> config.eos_token_id -> 0 |
|
|
Also sync generation_config.pad_token_id if present. |
|
|
""" |
|
|
pad_id = getattr(base_model.config, "pad_token_id", None) |
|
|
if pad_id is None: |
|
|
pad_id = getattr(base_model.config, "eos_token_id", None) |
|
|
if pad_id is None: |
|
|
pad_id = 0 |
|
|
base_model.config.pad_token_id = pad_id |
|
|
|
|
|
gen_cfg = getattr(base_model, "generation_config", None) |
|
|
if gen_cfg is not None and getattr(gen_cfg, "pad_token_id", None) is None: |
|
|
gen_cfg.pad_token_id = base_model.config.pad_token_id |
|
|
|
|
|
class MMEBModel(nn.Module): |
|
|
TRANSFORMER_CLS = AutoModelForCausalLM |
|
|
|
|
|
def __init__(self, |
|
|
encoder: PreTrainedModel, |
|
|
pooling: str = 'last', |
|
|
normalize: bool = False, |
|
|
temperature: float = 0.02, |
|
|
): |
|
|
super().__init__() |
|
|
self.config = encoder.config |
|
|
self.encoder = encoder |
|
|
self.pooling = pooling |
|
|
self.normalize = normalize |
|
|
self.temperature = temperature |
|
|
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean') |
|
|
self.is_ddp = dist.is_initialized() |
|
|
if self.is_ddp: |
|
|
self.process_rank = dist.get_rank() |
|
|
self.world_size = dist.get_world_size() |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
try: |
|
|
return next(self.parameters()).device |
|
|
except StopIteration: |
|
|
return torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def encode_input(self, input): |
|
|
if getattr(self, "model_backbone", None) == INTERNVIDEO2: |
|
|
if "input_ids" in input.keys(): |
|
|
|
|
|
text_output = self.encoder.get_text_encoder()( |
|
|
input["input_ids"], |
|
|
attention_mask=input["attention_mask"], |
|
|
return_dict=True, |
|
|
mode="text", |
|
|
) |
|
|
text_embeds = text_output.last_hidden_state |
|
|
pooled_text_embeds = text_embeds[:, 0] |
|
|
pooled_output = self.encoder.text_proj(pooled_text_embeds) |
|
|
pooled_output /= pooled_output.norm(dim=-1, keepdim=True) |
|
|
return pooled_output |
|
|
else: |
|
|
_, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True) |
|
|
vfeat = self.encoder.vision_proj(vfeat) |
|
|
vfeat /= vfeat.norm(dim=-1, keepdim=True) |
|
|
return vfeat |
|
|
elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]: |
|
|
|
|
|
texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] |
|
|
images = [] |
|
|
for imgs in input['images']: |
|
|
|
|
|
if isinstance(imgs, list): |
|
|
imgs = imgs[len(imgs) // 2] |
|
|
assert not isinstance(imgs, list) |
|
|
images.append(imgs) |
|
|
else: |
|
|
images.append(imgs) |
|
|
pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images) |
|
|
return pooled_output |
|
|
elif getattr(self, "model_backbone", None) == COLPALI: |
|
|
pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
return pooled_output |
|
|
elif getattr(self, "model_backbone", None) == LLAVA_NEXT: |
|
|
input['pixel_values'] = input['pixel_values'].squeeze(dim=1) |
|
|
input['image_sizes'] = input['image_sizes'].squeeze(dim=1) |
|
|
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
hidden_states = hidden_states.hidden_states[-1] |
|
|
pooled_output = self._pooling(hidden_states, input['attention_mask']) |
|
|
return pooled_output |
|
|
else: |
|
|
outputs = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
hidden_states = outputs.hidden_states[-1] |
|
|
|
|
|
|
|
|
|
|
|
actual_seq_len = hidden_states.size(1) |
|
|
input_attention_mask = input.get('attention_mask') |
|
|
|
|
|
if input_attention_mask is not None and input_attention_mask.size(1) == actual_seq_len: |
|
|
|
|
|
actual_attention_mask = input_attention_mask |
|
|
else: |
|
|
|
|
|
actual_attention_mask = None |
|
|
|
|
|
pooled_output = self._pooling(hidden_states, actual_attention_mask) |
|
|
return pooled_output |
|
|
|
|
|
def _pooling(self, last_hidden_state, attention_mask): |
|
|
if self.pooling == 'last' or self.pooling == 'eos': |
|
|
batch_size, seq_len, hidden_dim = last_hidden_state.shape |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is None or attention_mask.size(1) != seq_len: |
|
|
reps = last_hidden_state[:, -1, :] |
|
|
else: |
|
|
left_padding = (attention_mask[:, -1].sum() == batch_size) |
|
|
if left_padding: |
|
|
|
|
|
reps = last_hidden_state[:, -1, :] |
|
|
else: |
|
|
|
|
|
eos_indices = attention_mask.sum(dim=1) - 1 |
|
|
|
|
|
reps = last_hidden_state[ |
|
|
torch.arange(batch_size, device=last_hidden_state.device), eos_indices] |
|
|
else: |
|
|
raise NotImplementedError |
|
|
if self.normalize: |
|
|
reps = torch.nn.functional.normalize(reps, p=2, dim=-1) |
|
|
return reps |
|
|
|
|
|
@classmethod |
|
|
def build(cls, model_args: ModelArguments, **kwargs): |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
model_backbone = get_backbone_name(hf_config=config) |
|
|
print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}') |
|
|
|
|
|
base_model = None |
|
|
|
|
|
|
|
|
if model_backbone == PHI3V: |
|
|
config._attn_implementation = "eager" |
|
|
config.padding_side = "right" |
|
|
config.use_cache = False |
|
|
base_model = Phi3VForCausalLM.from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone == LLAVA_NEXT: |
|
|
config.use_cache = False |
|
|
config.padding_side = "left" |
|
|
base_model = LlavaNextForConditionalGeneration.from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone in [QWEN2_VL, QWEN2_5_VL]: |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.padding_side = "left" |
|
|
config.use_cache = False |
|
|
base_model = backbone2model[model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]: |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.padding_side = "left" |
|
|
config.use_cache = False |
|
|
|
|
|
from .utils import parse_layer_type |
|
|
lm_qwen_layer = 28 |
|
|
vis_qwen_layer = 32 |
|
|
lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer) |
|
|
vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer) |
|
|
|
|
|
base_model = backbone2model[model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
lm_skip_layer=lm_skip_layer, |
|
|
vis_skip_layer=vis_skip_layer, |
|
|
) |
|
|
else: |
|
|
config.use_cache = False |
|
|
base_model = cls.TRANSFORMER_CLS.from_pretrained( |
|
|
model_args.model_name, **kwargs, config=config, |
|
|
attn_implementation="flash_attention_2", |
|
|
torch_dtype=torch.bfloat16, |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
|
|
|
_ensure_pad_token_id_on_model(base_model) |
|
|
|
|
|
|
|
|
if model_args.lora: |
|
|
print_master(f'Loading lora adapter from {base_model}') |
|
|
lora_config = LoraConfig( |
|
|
r=model_args.lora_r, |
|
|
lora_alpha=model_args.lora_alpha, |
|
|
target_modules=model_args.lora_target_modules.split(','), |
|
|
lora_dropout=model_args.lora_dropout, |
|
|
init_lora_weights="gaussian", |
|
|
use_dora=True, |
|
|
inference_mode=False |
|
|
) |
|
|
lora_model = get_peft_model(base_model, lora_config) |
|
|
model = cls( |
|
|
encoder=lora_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
else: |
|
|
model = cls( |
|
|
encoder=base_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
return model |
|
|
|
|
|
|
|
|
@classmethod |
|
|
def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs): |
|
|
|
|
|
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name |
|
|
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
|
if not hasattr(model_args, "model_backbone") or not model_args.model_backbone: |
|
|
model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type) |
|
|
setattr(model_args, 'model_backbone', model_backbone) |
|
|
print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}') |
|
|
|
|
|
base_model = None |
|
|
|
|
|
if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}: |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
if hasattr(config, "vision_config") and config.vision_config is not None: |
|
|
config.vision_config._attn_implementation = "flash_attention_2" |
|
|
base_model = backbone2model[model_args.model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
config=config |
|
|
) |
|
|
elif model_args.model_backbone == PHI3V: |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config.use_cache = False |
|
|
config.padding_side = "right" |
|
|
base_model = Phi3VForCausalLM.from_pretrained( |
|
|
model_args.model_name, **kwargs, config=config, |
|
|
torch_dtype=torch.bfloat16, trust_remote_code=True |
|
|
) |
|
|
base_model.padding_side = "right" |
|
|
elif model_args.model_backbone == INTERNVIDEO2: |
|
|
print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}') |
|
|
config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", trust_remote_code=True) |
|
|
base_model = backbone2model[model_args.model_backbone].from_pretrained( |
|
|
"src/model/vlm_backbone/internvideo2/", config=config, trust_remote_code=True |
|
|
) |
|
|
elif model_args.model_backbone == GME: |
|
|
base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor']) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == LamRA: |
|
|
base_model = LamRAQwen2VL(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == LamRA_QWEN2_5: |
|
|
base_model = LamRAQwen25VL(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == COLPALI: |
|
|
base_model = ColPali.from_pretrained(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
else: |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config.use_cache = False |
|
|
base_model = cls.TRANSFORMER_CLS.from_pretrained( |
|
|
model_name_or_path, **kwargs, config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
|
|
|
_ensure_pad_token_id_on_model(base_model) |
|
|
|
|
|
|
|
|
if model_args.lora: |
|
|
print_master(f'Loading LoRA from {model_name_or_path}') |
|
|
lora_config = LoraConfig.from_pretrained(model_name_or_path) |
|
|
lora_model = PeftModel.from_pretrained( |
|
|
base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable |
|
|
) |
|
|
lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable) |
|
|
if not is_trainable: |
|
|
lora_model = lora_model.merge_and_unload() |
|
|
model = cls( |
|
|
encoder=lora_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
else: |
|
|
model = cls( |
|
|
encoder=base_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
|
|
|
model.model_backbone = model_args.model_backbone |
|
|
return model |
|
|
|
|
|
def save(self, output_dir: str): |
|
|
self.encoder.save_pretrained(output_dir) |
|
|
|
|
|
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs): |
|
|
qry_reps = self.encode_input(qry) if qry else None |
|
|
tgt_reps = self.encode_input(tgt) if tgt else None |
|
|
|
|
|
if qry_reps is None or tgt_reps is None: |
|
|
return {"qry_reps": qry_reps, "tgt_reps": tgt_reps} |
|
|
|
|
|
if self.is_ddp: |
|
|
all_qry_reps = self._dist_gather_tensor(qry_reps) |
|
|
all_tgt_reps = self._dist_gather_tensor(tgt_reps) |
|
|
else: |
|
|
all_qry_reps = qry_reps |
|
|
all_tgt_reps = tgt_reps |
|
|
|
|
|
scores = self.compute_similarity(all_qry_reps, all_tgt_reps) |
|
|
scores = scores.view(all_qry_reps.size(0), -1) |
|
|
target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long) |
|
|
target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0)) |
|
|
loss = self.cross_entropy(scores / self.temperature, target) |
|
|
if self.is_ddp: |
|
|
loss = loss * self.world_size |
|
|
|
|
|
return loss |
|
|
|
|
|
def _dist_gather_tensor(self, t: Tensor): |
|
|
t = t.contiguous() |
|
|
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)] |
|
|
dist.all_gather(all_tensors, t) |
|
|
all_tensors[self.process_rank] = t |
|
|
all_tensors = torch.cat(all_tensors, dim=0) |
|
|
return all_tensors |
|
|
|
|
|
def compute_similarity(self, q_reps, p_reps): |
|
|
return torch.matmul(q_reps, p_reps.transpose(0, 1)) |
|
|
|