File size: 18,165 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
    backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V

from src.arguments import ModelArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
    QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration

from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']

def _ensure_pad_token_id_on_model(base_model):
    """
    Ensure base_model.config.pad_token_id is a valid int.
    Fallback order: config.pad_token_id -> config.eos_token_id -> 0
    Also sync generation_config.pad_token_id if present.
    """
    pad_id = getattr(base_model.config, "pad_token_id", None)
    if pad_id is None:
        pad_id = getattr(base_model.config, "eos_token_id", None)
        if pad_id is None:
            pad_id = 0
        base_model.config.pad_token_id = pad_id

    gen_cfg = getattr(base_model, "generation_config", None)
    if gen_cfg is not None and getattr(gen_cfg, "pad_token_id", None) is None:
        gen_cfg.pad_token_id = base_model.config.pad_token_id

class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'last',
                 normalize: bool = False,
                 temperature: float = 0.02,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()

    @property
    def device(self):
        try:
            return next(self.parameters()).device
        except StopIteration:
            return torch.device("cuda" if torch.cuda.is_available() else "cpu")
            
    def encode_input(self, input):
        if getattr(self, "model_backbone", None) == INTERNVIDEO2:
            if "input_ids" in input.keys():
                # text side
                text_output = self.encoder.get_text_encoder()(
                    input["input_ids"],
                    attention_mask=input["attention_mask"],
                    return_dict=True,
                    mode="text",
                )
                text_embeds = text_output.last_hidden_state
                pooled_text_embeds = text_embeds[:, 0]
                pooled_output = self.encoder.text_proj(pooled_text_embeds)
                pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
                return pooled_output
            else:
                _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
                vfeat = self.encoder.vision_proj(vfeat)
                vfeat /= vfeat.norm(dim=-1, keepdim=True)
                return vfeat
        elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
            # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
            images = []
            for imgs in input['images']:
                # if multi images are given, select the middle frame only
                if isinstance(imgs, list):
                    imgs = imgs[len(imgs) // 2]
                    assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
                    images.append(imgs)
                else:
                    images.append(imgs)
            pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
            return pooled_output
        elif getattr(self, "model_backbone", None) == COLPALI:
            pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            return pooled_output
        elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hidden_states = hidden_states.hidden_states[-1]
            pooled_output = self._pooling(hidden_states, input['attention_mask'])
            return pooled_output
        else:
            outputs = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hidden_states = outputs.hidden_states[-1]
            
            # 对于 Qwen2.5-VL 等在内部做了 token pooling 的模型,
            # attention_mask 可能与 hidden_states 的序列长度不匹配
            actual_seq_len = hidden_states.size(1)
            input_attention_mask = input.get('attention_mask')
            
            if input_attention_mask is not None and input_attention_mask.size(1) == actual_seq_len:
                # attention_mask 长度匹配,直接使用
                actual_attention_mask = input_attention_mask
            else:
                # 长度不匹配或没有 attention_mask,使用 None(_pooling 函数会处理)
                actual_attention_mask = None
            
            pooled_output = self._pooling(hidden_states, actual_attention_mask)
            return pooled_output

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            batch_size, seq_len, hidden_dim = last_hidden_state.shape
            
            # 如果 attention_mask 为 None 或长度不匹配,直接使用最后一个位置
            # (Qwen 系列使用 left padding,所以最后一个位置是有效的)
            if attention_mask is None or attention_mask.size(1) != seq_len:
                reps = last_hidden_state[:, -1, :]
            else:
                left_padding = (attention_mask[:, -1].sum() == batch_size)
                if left_padding:
                    # Get the vectors at the last position
                    reps = last_hidden_state[:, -1, :]
                else:
                    # Calculate last 1 position in the original tensor
                    eos_indices = attention_mask.sum(dim=1) - 1
                    # Get the vectors at the last 1 position of each attention mask
                    reps = last_hidden_state[
                        torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **kwargs):
        config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
        model_backbone = get_backbone_name(hf_config=config)
        print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')

        base_model = None  # <-- ensure defined before branches

        # Loading the base model
        if model_backbone == PHI3V:
            config._attn_implementation = "eager"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone == LLAVA_NEXT:
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False

            from .utils import parse_layer_type
            lm_qwen_layer = 28
            vis_qwen_layer = 32
            lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
            vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)

            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                lm_skip_layer=lm_skip_layer,
                vis_skip_layer=vis_skip_layer,
            )
        else:
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True
            )

        # <-- call after base_model is assigned
        _ensure_pad_token_id_on_model(base_model)

        # Build MMEBModel
        if model_args.lora:
            print_master(f'Loading lora adapter from {base_model}')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=model_args.lora_target_modules.split(','),
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        return model


    @classmethod
    def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
        # Loading the base model
        model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
            model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
            setattr(model_args, 'model_backbone', model_backbone)
        print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')

        base_model = None  # <-- ensure defined before branches

        if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config._attn_implementation = "flash_attention_2"
            if hasattr(config, "vision_config") and config.vision_config is not None:
                config.vision_config._attn_implementation = "flash_attention_2"
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                config=config
            )
        elif model_args.model_backbone == PHI3V:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                torch_dtype=torch.bfloat16, trust_remote_code=True
            )
            base_model.padding_side = "right"
        elif model_args.model_backbone == INTERNVIDEO2:
            print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
            config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", trust_remote_code=True)
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                "src/model/vlm_backbone/internvideo2/", config=config, trust_remote_code=True
            )
        elif model_args.model_backbone == GME:
            base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA:
            base_model = LamRAQwen2VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA_QWEN2_5:
            base_model = LamRAQwen25VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == COLPALI:
            base_model = ColPali.from_pretrained(model_args.model_name)
            setattr(base_model, 'config', config)
        else:
            # Loading external base model from HF
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_name_or_path, **kwargs, config=config,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True
            )

        # <-- call after base_model is assigned
        _ensure_pad_token_id_on_model(base_model)

        # Building the model on top of the base
        if model_args.lora:
            print_master(f'Loading LoRA from {model_name_or_path}')
            lora_config = LoraConfig.from_pretrained(model_name_or_path)
            lora_model = PeftModel.from_pretrained(
                base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable
            )
            lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
            if not is_trainable:
                lora_model = lora_model.merge_and_unload()
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )

        model.model_backbone = model_args.model_backbone
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
        qry_reps = self.encode_input(qry) if qry else None  # (bsz_per_device, dim)
        tgt_reps = self.encode_input(tgt) if tgt else None # (bsz_per_device, dim)

        if qry_reps is None or tgt_reps is None:
            return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}

        if self.is_ddp:
            all_qry_reps = self._dist_gather_tensor(qry_reps)
            all_tgt_reps = self._dist_gather_tensor(tgt_reps)
        else:
            all_qry_reps = qry_reps
            all_tgt_reps = tgt_reps

        scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
        scores = scores.view(all_qry_reps.size(0), -1)
        target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
        target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
        loss = self.cross_entropy(scores / self.temperature, target)
        if self.is_ddp:
            loss = loss * self.world_size

        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))