code_SAS_VLM2Vec / eval_analysis.py
MgGladys's picture
Add files using upload-large-folder tool
2a40e7a verified
import datetime
import logging
import json
import random
import time
import numpy as np
import os
import pickle
import sys
import torch
import torch.distributed as dist
import torch.nn.functional as F
import yaml
import math # add this
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import HfArgumentParser, AutoConfig
from datasets import Dataset, concatenate_datasets
from datasets.distributed import split_dataset_by_node
from src.arguments import ModelArguments, DataArguments, TrainingArguments
from src.data.collator.eval_collator import MultimodalEvalDataCollator
from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset
from src.eval_utils.metrics import RankingMetrics
from src.model.model_analysis import MMEBModel
from src.model.processor import get_backbone_name, load_processor, COLPALI
from src.utils import batch_to_device, print_rank, print_master
import multiprocessing
from multiprocessing import Pool, cpu_count
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s')
logger = logging.getLogger(__name__)
def pad_dataset_to_divisible(dataset, world_size):
num_samples = len(dataset)
if num_samples % world_size == 0:
return dataset, num_samples
num_to_add = world_size - (num_samples % world_size)
padded_size = num_samples + num_to_add
padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)])
padded_dataset = concatenate_datasets([dataset, padding_data])
return padded_dataset, padded_size
def encode_embeddings(
model: MMEBModel,
loader: DataLoader,
training_args: TrainingArguments,
model_args: ModelArguments,
full_dataset: Dataset,
encode_side: str,
description: str = "Encoding"
) -> tuple[np.ndarray, list]:
"""
Encodes embeddings for a given dataset using the model, handling both standard and
late-interaction models in a DDP-safe manner.
"""
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# Check if the model is a late-interaction type
is_late_interaction = (model_args.model_backbone == COLPALI)
local_embeds = []
local_gt_infos = []
local_max_len = 0
model.eval()
with torch.no_grad():
for inputs, dataset_info in tqdm(loader, desc=f"{description} (rank {local_rank})", disable=local_rank > 0):
inputs = batch_to_device(inputs, training_args.device)
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
# Determine if encoding query or target based on available keys
if encode_side == "qry":
output = model(qry=inputs)
reps = output["qry_reps"].detach()
local_gt_infos.extend(dataset_info) # to retain all information per query
else:
output = model(tgt=inputs)
reps = output["tgt_reps"].detach()
local_gt_infos.extend([info["cand_name"] for info in dataset_info]) # to retain ground-truth labels
if is_late_interaction and reps.dim() == 3:
local_max_len = max(local_max_len, reps.shape[1])
local_embeds.append(reps)
if not local_embeds:
# Handle cases where a rank gets no data
return np.array([]), []
# === DDP Synchronization and Padding for Late-Interaction Models ===
if is_late_interaction:
if dist.is_initialized():
# 1. Find the global maximum sequence length across all ranks
local_max_len_tensor = torch.tensor(local_max_len, device=training_args.device)
dist.all_reduce(local_max_len_tensor, op=dist.ReduceOp.MAX)
global_max_len = local_max_len_tensor.item()
else:
global_max_len = local_max_len
# 2. Pad all local embeddings to the global max length
padded_embeds = []
for reps_batch in local_embeds:
if reps_batch.dim() == 3:
B, L, H = reps_batch.shape
padding_size = global_max_len - L
padded_batch = F.pad(reps_batch, (0, 0, 0, padding_size), "constant", 0)
padded_embeds.append(padded_batch)
else: # Should not happen if model is consistently late-interaction
padded_embeds.append(reps_batch)
embeds_tensor = torch.cat(padded_embeds, dim=0).contiguous()
else: # Standard dense models
embeds_tensor = torch.cat(local_embeds, dim=0).contiguous()
# === Gather embeddings and keys from all ranks ===
if dist.is_initialized() and full_dataset.num_rows >= world_size:
print_master(f"Gathering {encode_side} embeddings across all ranks...")
# Use the more efficient all_gather_into_tensor for tensors
output_shape = list(embeds_tensor.shape)
output_shape[0] = full_dataset.num_rows
embeds_tensor = embeds_tensor.to(training_args.device)
gathered_embeds_tensor = torch.empty(output_shape, dtype=embeds_tensor.dtype, device=training_args.device)
dist.all_gather_into_tensor(gathered_embeds_tensor, embeds_tensor)
final_embeddings = gathered_embeds_tensor.cpu().float().numpy()
# Gather metadata, for which all_gather_object is appropriate
gathered_gt_infos = [None for _ in range(world_size)]
dist.all_gather_object(gathered_gt_infos, local_gt_infos)
all_gt_infos = [key for rank_keys in gathered_gt_infos for key in rank_keys]
else:
all_gt_infos = local_gt_infos
final_embeddings = embeds_tensor.cpu().float().numpy()
return final_embeddings, all_gt_infos
def linear_cka(matrix1, matrix2):
"""
Compute Linear CKA between two matrices X (N, D1) and Y (N, D2).
"""
# Center the matrices
matrix1 = matrix1 - matrix1.mean(dim=0, keepdim=True)
matrix2 = matrix2 - matrix2.mean(dim=0, keepdim=True)
# Compute Gram matrices
gram1 = torch.mm(matrix1, matrix1.t())
gram2 = torch.mm(matrix2, matrix2.t())
# Compute HSIC
hsic_cross = torch.sum(gram1 * gram2)
hsic_1 = torch.sum(gram1 * gram1)
hsic_2 = torch.sum(gram2 * gram2)
# Normalize
cka = hsic_cross / (torch.sqrt(hsic_1) * torch.sqrt(hsic_2))
return cka.item()
def run_layer_analysis(model, dataset, processor, model_args, data_args, training_args, output_dir, num_samples=64):
"""
Run Layer-wise CKA and Similarity analysis on a subset of data.
"""
print_master(f"\n[Analysis] Starting Layer-wise Analysis on {num_samples} samples...")
# 1. Prepare a small subset
subset_indices = list(range(min(len(dataset), num_samples)))
subset = dataset.select(subset_indices)
# We need pairs (Query, Positive Candidate) to measure alignment
# Assuming dataset yields (query_input, candidate_input) or similar.
# But based on existing code, `eval_collator` handles "qry" or "cand" mode.
# We will process Queries and their corresponding Ground Truth Candidates manually.
# Create loaders
from src.data.collator.eval_collator import MultimodalEvalDataCollator
qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
# We need to act as if we are processing the subset.
# For simplicity, we just take the first batch of size num_samples
loader = DataLoader(subset, batch_size=num_samples, collate_fn=qry_collator) # Queries
# Fetch one batch of queries
try:
qry_batch, qry_info = next(iter(loader))
except StopIteration:
return
# Fetch corresponding candidates
# This is tricky because `dataset` might be just queries with metadata.
# We need to construct the candidate batch corresponding to these queries.
# For the sake of CKA, we can just analyze the QUERY Encoder's evolution.
# For Alignment, we need pairs.
# Let's Focus on QUERY Encoder Structure (CKA) first.
qry_batch = batch_to_device(qry_batch, training_args.device)
with torch.no_grad():
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
# Shape: [Layers, Batch, Dim]
all_layers_reps = model.encode_all_layers(qry_batch)
num_layers, bsz, dim = all_layers_reps.shape
final_layer_reps = all_layers_reps[-1] # [Batch, Dim]
cka_scores = []
cos_sim_with_final = []
# 2. Compute Metrics
for i in range(num_layers):
current_layer_reps = all_layers_reps[i]
# Metric A: CKA (Structural Similarity to Final Layer)
# Ensure float32 for stability in CKA
cka = linear_cka(current_layer_reps.float(), final_layer_reps.float())
cka_scores.append(cka)
# Metric B: Average Cosine Similarity with Final Layer (Representation Drift)
# Measures how much the vectors change direction individually
cos_sim = F.cosine_similarity(current_layer_reps.float(), final_layer_reps.float(), dim=-1).mean().item()
cos_sim_with_final.append(cos_sim)
# 3. Save Results
results = {
"layers": list(range(1, num_layers + 1)),
"cka_scores": cka_scores,
"cos_sim_with_final": cos_sim_with_final
}
save_path = os.path.join(output_dir, "layer_analysis_results.json")
with open(save_path, "w") as f:
json.dump(results, f, indent=4)
print_master(f"[Analysis] CKA and Similarity results saved to {save_path}")
print_master(f"[Analysis] Layer 12 CKA: {cka_scores[min(11, num_layers-1)]:.4f}")
return results
def main():
if "RANK" in os.environ and dist.is_available() and not dist.is_initialized():
dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60))
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# DEBUG PRINTS for Distributed Setup
print_master("Distributed init debug info:")
print_master(f"RANK: {os.environ.get('RANK')}")
print_master(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}")
print_master(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}")
print_master(f"MASTER_ADDR: {os.environ.get('MASTER_ADDR')}")
print_master(f"MASTER_PORT: {os.environ.get('MASTER_PORT')}")
if dist.is_initialized():
print_rank(f"dist.get_rank(): {dist.get_rank()}")
print_rank(f"dist.get_world_size(): {dist.get_world_size()}")
for arg in sys.argv:
if arg.startswith("--local-rank="):
rank = arg.split("=")[1]
sys.argv.remove(arg)
sys.argv.append('--local_rank')
sys.argv.append(rank)
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
os.makedirs(data_args.encode_output_path, exist_ok=True)
# --- Model Loading ---
hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
if not getattr(model_args, "model_backbone", None):
model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
setattr(training_args, 'model_backbone', model_backbone)
print_master(f'Model Backbone: {model_args.model_backbone}')
# --- DDP-Safe Model Loading ---
# Step 1: Only the master process (rank 0) downloads the model.
if local_rank == 0:
processor = load_processor(model_args, data_args)
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
print_master(f"[rank=0] Loading the model from Huggingface: {model_args.model_name}...")
# Step 2: All processes wait here. The non-master processes will pause
# until the master process (rank 0) finishes downloading and exits this barrier.
if torch.distributed.is_initialized():
torch.distributed.barrier()
# Step 3: Now that the model is cached, the non-master processes load it from the local cache.
if local_rank != 0:
print_rank(f"Loading the model from cache...")
processor = load_processor(model_args, data_args)
time.sleep(random.randint(2 * local_rank, 3 * local_rank))
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
model.eval()
model = model.to(training_args.device, dtype=torch.bfloat16)
# model.set_inference_layers(qry_layers=24, tgt_layers=24)
# # === INSERT ANALYSIS CODE HERE ===
# if local_rank == 0: # Run analysis only on master rank
# # We need a dataset to run analysis. Let's use the first dataset in the config.
# with open(data_args.dataset_config, 'r') as yaml_file:
# temp_configs = yaml.safe_load(yaml_file)
# first_dataset_name = list(temp_configs.keys())[0]
# first_task_config = temp_configs[first_dataset_name]
# if data_args.data_basedir is not None:
# for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
# if data_args.data_basedir and first_task_config.get(key):
# first_task_config[key] = os.path.join(data_args.data_basedir, first_task_config[key])
# print_master(f"--- Running Layer Analysis on {first_dataset_name} ---")
# analysis_dataset, _ = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **first_task_config)
# # Run the analysis
# run_layer_analysis(
# model,
# analysis_dataset,
# processor,
# model_args,
# data_args,
# training_args,
# data_args.encode_output_path
# )
# if dist.is_initialized():
# dist.barrier()
# # === END INSERT ===
# === INSERT ANALYSIS CODE START ===
if local_rank == 0: # Run analysis only on master rank
import numpy as np # Ensure numpy is imported
# Load configs
with open(data_args.dataset_config, 'r') as yaml_file:
analysis_configs = yaml.safe_load(yaml_file)
print_master(f"\n[Global Analysis] Starting Layer-wise Analysis across {len(analysis_configs)} datasets...")
all_datasets_cka = []
all_datasets_cos = []
dataset_names_log = []
# Loop through ALL datasets defined in the yaml
for d_name, d_config in analysis_configs.items():
print_master(f" > Analyzing dataset: {d_name} ...")
# Handle path adjustment
if data_args.data_basedir is not None:
for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
if d_config.get(key):
d_config[key] = os.path.join(data_args.data_basedir, d_config[key])
# Instantiate dataset
# catch potential errors to avoid crashing the whole analysis if one dataset fails
try:
analysis_dataset, _ = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **d_config)
# Run Analysis (Reduced samples per dataset to save time, e.g., 32)
# We collect local results but don't save individual JSONs to keep folder clean (or you can save if you want)
res = run_layer_analysis(
model,
analysis_dataset,
processor,
model_args,
data_args,
training_args,
data_args.encode_output_path,
num_samples=128 # 32 samples per task is sufficient for CKA
)
if res:
all_datasets_cka.append(res["cka_scores"])
all_datasets_cos.append(res["cos_sim_with_final"])
dataset_names_log.append(d_name)
except Exception as e:
print_master(f" [Warning] Failed to analyze {d_name}: {e}")
# Compute Averages
if all_datasets_cka:
avg_cka = np.mean(np.array(all_datasets_cka), axis=0).tolist()
avg_cos = np.mean(np.array(all_datasets_cos), axis=0).tolist()
std_cka = np.std(np.array(all_datasets_cka), axis=0).tolist() # Calculate Variance/StdDev
# Save Global Results
global_results = {
"layers": res["layers"], # Assume all have same layers
"analyzed_datasets": dataset_names_log,
"avg_cka_scores": avg_cka,
"std_cka_scores": std_cka,
"avg_cos_sim": avg_cos,
"individual_cka": all_datasets_cka # Save raw data if you want to plot distribution
}
save_path = os.path.join(data_args.encode_output_path, "global_layer_analysis_avg.json")
with open(save_path, "w") as f:
json.dump(global_results, f, indent=4)
print_master(f"\n[Global Analysis] Completed! Averaged results saved to {save_path}")
print_master(f"[Global Analysis] Avg Layer 12 CKA: {avg_cka[11]:.4f} (Std: {std_cka[11]:.4f})")
else:
print_master("[Global Analysis] No datasets were successfully analyzed.")
if dist.is_initialized():
dist.barrier()
# === INSERT ANALYSIS CODE END ===
with open(data_args.dataset_config, 'r') as yaml_file:
dataset_configs = yaml.safe_load(yaml_file)
# --- Main Evaluation Loop ---
for dataset_idx, (dataset_name, task_config) in enumerate(dataset_configs.items()):
# 0. load dataset
if dist.is_initialized():
dist.barrier()
print_master(f"--- Evaluating {dataset_name} ---")
query_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry")
cand_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_tgt")
dataset_info_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_info.jsonl")
do_query = not os.path.exists(query_embed_path) or not os.path.exists(dataset_info_path)
do_cand = not os.path.exists(cand_embed_path)
if do_query or do_cand:
if data_args.data_basedir is not None:
# Construct full paths for data files if --data_basedir is provided
for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
if data_args.data_basedir and task_config.get(key):
task_config[key] = os.path.join(data_args.data_basedir, task_config[key])
full_eval_qry_dataset, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_config)
full_eval_cand_dataset = generate_cand_dataset(full_eval_qry_dataset, corpus)
eval_qry_dataset, eval_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# Pad datasets to be divisible by world_size before splitting
if dist.is_initialized():
padded_qry_dataset, _ = pad_dataset_to_divisible(full_eval_qry_dataset, world_size)
padded_cand_dataset, _ = pad_dataset_to_divisible(full_eval_cand_dataset, world_size)
eval_qry_dataset = split_dataset_by_node(padded_qry_dataset, rank=local_rank, world_size=world_size)
eval_cand_dataset = split_dataset_by_node(padded_cand_dataset, rank=local_rank, world_size=world_size)
else:
padded_qry_dataset, padded_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# --- 1. Compute Query Embeddings ---
if do_query:
print_master("Encoding queries...")
eval_qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
eval_qry_loader = DataLoader(eval_qry_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_qry_collator, num_workers=training_args.dataloader_num_workers)
query_embeds, gt_infos = encode_embeddings(model, eval_qry_loader, training_args, model_args, padded_qry_dataset, encode_side="qry", description=f"Queries for {dataset_name}")
query_embeds = query_embeds[:len(full_eval_qry_dataset)] # world_size>1, trim the padded data points
gt_infos = gt_infos[:len(full_eval_qry_dataset)]
if local_rank == 0:
with open(query_embed_path, 'wb') as f:
pickle.dump(query_embeds, f)
with open(dataset_info_path, 'w') as f:
for info in gt_infos:
f.write(json.dumps(info) + '\n')
print_master(f"Saved query embeddings to {query_embed_path}")
if dist.is_initialized():
dist.barrier()
# --- 2. Compute Candidate Embeddings ---
if do_cand:
print_master("Encoding candidates...")
eval_cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
eval_cand_loader = DataLoader(eval_cand_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_cand_collator, num_workers=training_args.dataloader_num_workers)
cand_embeds, all_cand_ids = encode_embeddings(model, eval_cand_loader, training_args, model_args, padded_cand_dataset, encode_side="cand", description=f"Candidates for {dataset_name}")
cand_embeds = cand_embeds[:len(full_eval_cand_dataset)] # world_size>1, trim the padded data points
all_cand_ids = all_cand_ids[:len(full_eval_cand_dataset)]
if local_rank == 0:
cand_embed_dict = {cand_id: embed for cand_id, embed in zip(all_cand_ids, cand_embeds)}
with open(cand_embed_path, 'wb') as f: pickle.dump(cand_embed_dict, f)
print_master(f"Saved candidate embeddings to {cand_embed_path}")
if dist.is_initialized():
dist.barrier()
# --- 3. Compute Scores (on master rank only) ---
if local_rank == 0:
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
if os.path.exists(score_path):
try:
with open(score_path, "r") as f:
score_dict = json.load(f)
print_master(f"Score of {dataset_name} (loaded from previous run): {score_path}")
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
print_master(formatted)
continue
except Exception as e:
print_master(f"Failed to load score for {dataset_name}, skipping {dataset_name}")
with open(query_embed_path, 'rb') as f: qry_embeds = pickle.load(f)
with open(cand_embed_path, 'rb') as f: cand_embed_dict = pickle.load(f)
gt_infos = [json.loads(l) for l in open(dataset_info_path)]
pred_dicts = []
rank_against_all_candidates = task_config.get("eval_type", "global") == "global"
if rank_against_all_candidates:
cand_keys = list(cand_embed_dict.keys())
cand_embeds = np.stack([cand_embed_dict[key] for key in cand_keys])
# Handle late-interaction scoring
if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
qry_embed = torch.from_numpy(qry_embeds)
cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
scores = processor.score(qry_embed, cand_embeds, batch_size=64) # use ColPali score function
ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()
else: # Dense
cosine_scores = np.dot(qry_embeds, cand_embeds.T)
ranked_candids = np.argsort(-cosine_scores, axis=1)
for qid, (ranked_candid, gt_info) in tqdm(enumerate(zip(ranked_candids, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [cand_keys[i] for i in ranked_candid],
"label": rel_docids,
"rel_scores": rel_scores,
})
else:
for qid, (qry_embed, gt_info) in tqdm(enumerate(zip(qry_embeds, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
cand_embeds = np.stack([cand_embed_dict[key] for key in gt_info["cand_names"]])
if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
qry_embed = torch.from_numpy(np.array(qry_embed)).unsqueeze(0)
cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
scores = processor.score(qry_embed, cand_embeds, batch_size=1024) # use ColPali score function
ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()[0]
else:
cosine_score = np.dot(qry_embed, cand_embeds.T)
ranked_candids = np.argsort(-cosine_score)
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [gt_info["cand_names"][i] for i in ranked_candids],
"label": rel_docids,
"rel_scores": rel_scores,
})
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
pred_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_pred.jsonl")
metrics_to_report = task_config["metrics"] if task_config.get("metrics", None) is not None else ["hit", "ndcg", "precision", "recall", "f1", "map", "mrr"]
metrics = RankingMetrics(metrics_to_report)
score_dict = metrics.evaluate(pred_dicts)
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
score_dict["num_pred"] = len(pred_dicts)
score_dict["num_data"] = len(gt_infos)
print_master(f"Score of {dataset_name}:")
print_master(formatted)
print_master(f"Outputting final score to: {score_path}")
with open(score_path, "w") as f:
json.dump(score_dict, f, indent=4)
with open(pred_path, "w") as f:
for pred in pred_dicts:
f.write(json.dumps(pred) + '\n')
if __name__ == "__main__":
main()