File size: 27,763 Bytes
2a40e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import datetime
import logging
import json
import random
import time

import numpy as np
import os
import pickle
import sys
import torch
import torch.distributed as dist
import torch.nn.functional as F
import yaml
import math # add this

from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import HfArgumentParser, AutoConfig
from datasets import Dataset, concatenate_datasets
from datasets.distributed import split_dataset_by_node

from src.arguments import ModelArguments, DataArguments, TrainingArguments
from src.data.collator.eval_collator import MultimodalEvalDataCollator
from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset
from src.eval_utils.metrics import RankingMetrics
from src.model.model_analysis import MMEBModel
from src.model.processor import get_backbone_name, load_processor, COLPALI
from src.utils import batch_to_device, print_rank, print_master
import multiprocessing
from multiprocessing import Pool, cpu_count
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s')
logger = logging.getLogger(__name__)


def pad_dataset_to_divisible(dataset, world_size):
    num_samples = len(dataset)
    if num_samples % world_size == 0:
        return dataset, num_samples

    num_to_add = world_size - (num_samples % world_size)
    padded_size = num_samples + num_to_add

    padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)])
    padded_dataset = concatenate_datasets([dataset, padding_data])
    return padded_dataset, padded_size


def encode_embeddings(
    model: MMEBModel,
    loader: DataLoader,
    training_args: TrainingArguments,
    model_args: ModelArguments,
    full_dataset: Dataset,
    encode_side: str,
    description: str = "Encoding"
) -> tuple[np.ndarray, list]:
    """
    Encodes embeddings for a given dataset using the model, handling both standard and
    late-interaction models in a DDP-safe manner.
    """
    local_rank = dist.get_rank() if dist.is_initialized() else 0
    world_size = dist.get_world_size() if dist.is_initialized() else 1

    # Check if the model is a late-interaction type
    is_late_interaction = (model_args.model_backbone == COLPALI)

    local_embeds = []
    local_gt_infos = []
    local_max_len = 0

    model.eval()
    with torch.no_grad():
        for inputs, dataset_info in tqdm(loader, desc=f"{description} (rank {local_rank})", disable=local_rank > 0):
            inputs = batch_to_device(inputs, training_args.device)
            with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
                # Determine if encoding query or target based on available keys
                if encode_side == "qry":
                    output = model(qry=inputs)
                    reps = output["qry_reps"].detach()
                    local_gt_infos.extend(dataset_info)  # to retain all information per query
                else:
                    output = model(tgt=inputs)
                    reps = output["tgt_reps"].detach()
                    local_gt_infos.extend([info["cand_name"] for info in dataset_info])  # to retain ground-truth labels

            if is_late_interaction and reps.dim() == 3:
                local_max_len = max(local_max_len, reps.shape[1])

            local_embeds.append(reps)

    if not local_embeds:
        # Handle cases where a rank gets no data
        return np.array([]), []

    # === DDP Synchronization and Padding for Late-Interaction Models ===
    if is_late_interaction:
        if dist.is_initialized():
            # 1. Find the global maximum sequence length across all ranks
            local_max_len_tensor = torch.tensor(local_max_len, device=training_args.device)
            dist.all_reduce(local_max_len_tensor, op=dist.ReduceOp.MAX)
            global_max_len = local_max_len_tensor.item()
        else:
            global_max_len = local_max_len

        # 2. Pad all local embeddings to the global max length
        padded_embeds = []
        for reps_batch in local_embeds:
            if reps_batch.dim() == 3:
                B, L, H = reps_batch.shape
                padding_size = global_max_len - L
                padded_batch = F.pad(reps_batch, (0, 0, 0, padding_size), "constant", 0)
                padded_embeds.append(padded_batch)
            else: # Should not happen if model is consistently late-interaction
                padded_embeds.append(reps_batch)

        embeds_tensor = torch.cat(padded_embeds, dim=0).contiguous()
    else: # Standard dense models
        embeds_tensor = torch.cat(local_embeds, dim=0).contiguous()


    # === Gather embeddings and keys from all ranks ===
    if dist.is_initialized() and full_dataset.num_rows >= world_size:
        print_master(f"Gathering {encode_side} embeddings across all ranks...")

        # Use the more efficient all_gather_into_tensor for tensors
        output_shape = list(embeds_tensor.shape)
        output_shape[0] = full_dataset.num_rows
        embeds_tensor = embeds_tensor.to(training_args.device)
        gathered_embeds_tensor = torch.empty(output_shape, dtype=embeds_tensor.dtype, device=training_args.device)
        dist.all_gather_into_tensor(gathered_embeds_tensor, embeds_tensor)
        final_embeddings = gathered_embeds_tensor.cpu().float().numpy()
        # Gather metadata, for which all_gather_object is appropriate
        gathered_gt_infos = [None for _ in range(world_size)]
        dist.all_gather_object(gathered_gt_infos, local_gt_infos)
        all_gt_infos = [key for rank_keys in gathered_gt_infos for key in rank_keys]
    else:
        all_gt_infos = local_gt_infos
        final_embeddings = embeds_tensor.cpu().float().numpy()

    return final_embeddings, all_gt_infos

def linear_cka(matrix1, matrix2):
    """
    Compute Linear CKA between two matrices X (N, D1) and Y (N, D2).
    """
    # Center the matrices
    matrix1 = matrix1 - matrix1.mean(dim=0, keepdim=True)
    matrix2 = matrix2 - matrix2.mean(dim=0, keepdim=True)

    # Compute Gram matrices
    gram1 = torch.mm(matrix1, matrix1.t())
    gram2 = torch.mm(matrix2, matrix2.t())

    # Compute HSIC
    hsic_cross = torch.sum(gram1 * gram2)
    hsic_1 = torch.sum(gram1 * gram1)
    hsic_2 = torch.sum(gram2 * gram2)

    # Normalize
    cka = hsic_cross / (torch.sqrt(hsic_1) * torch.sqrt(hsic_2))
    return cka.item()

def run_layer_analysis(model, dataset, processor, model_args, data_args, training_args, output_dir, num_samples=64):
    """
    Run Layer-wise CKA and Similarity analysis on a subset of data.
    """
    print_master(f"\n[Analysis] Starting Layer-wise Analysis on {num_samples} samples...")
    
    # 1. Prepare a small subset
    subset_indices = list(range(min(len(dataset), num_samples)))
    subset = dataset.select(subset_indices)
    
    # We need pairs (Query, Positive Candidate) to measure alignment
    # Assuming dataset yields (query_input, candidate_input) or similar.
    # But based on existing code, `eval_collator` handles "qry" or "cand" mode.
    # We will process Queries and their corresponding Ground Truth Candidates manually.
    
    # Create loaders
    from src.data.collator.eval_collator import MultimodalEvalDataCollator
    qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
    cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
    
    # We need to act as if we are processing the subset. 
    # For simplicity, we just take the first batch of size num_samples
    loader = DataLoader(subset, batch_size=num_samples, collate_fn=qry_collator) # Queries
    
    # Fetch one batch of queries
    try:
        qry_batch, qry_info = next(iter(loader))
    except StopIteration:
        return

    # Fetch corresponding candidates
    # This is tricky because `dataset` might be just queries with metadata.
    # We need to construct the candidate batch corresponding to these queries.
    # For the sake of CKA, we can just analyze the QUERY Encoder's evolution.
    # For Alignment, we need pairs.
    # Let's Focus on QUERY Encoder Structure (CKA) first.
    
    qry_batch = batch_to_device(qry_batch, training_args.device)
    
    with torch.no_grad():
        with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
            # Shape: [Layers, Batch, Dim]
            all_layers_reps = model.encode_all_layers(qry_batch)
    
    num_layers, bsz, dim = all_layers_reps.shape
    final_layer_reps = all_layers_reps[-1] # [Batch, Dim]
    
    cka_scores = []
    cos_sim_with_final = []
    
    # 2. Compute Metrics
    for i in range(num_layers):
        current_layer_reps = all_layers_reps[i]
        
        # Metric A: CKA (Structural Similarity to Final Layer)
        # Ensure float32 for stability in CKA
        cka = linear_cka(current_layer_reps.float(), final_layer_reps.float())
        cka_scores.append(cka)
        
        # Metric B: Average Cosine Similarity with Final Layer (Representation Drift)
        # Measures how much the vectors change direction individually
        cos_sim = F.cosine_similarity(current_layer_reps.float(), final_layer_reps.float(), dim=-1).mean().item()
        cos_sim_with_final.append(cos_sim)
        
    # 3. Save Results
    results = {
        "layers": list(range(1, num_layers + 1)),
        "cka_scores": cka_scores,
        "cos_sim_with_final": cos_sim_with_final
    }
    
    save_path = os.path.join(output_dir, "layer_analysis_results.json")
    with open(save_path, "w") as f:
        json.dump(results, f, indent=4)
        
    print_master(f"[Analysis] CKA and Similarity results saved to {save_path}")
    print_master(f"[Analysis] Layer 12 CKA: {cka_scores[min(11, num_layers-1)]:.4f}")
    
    return results

def main():
    if "RANK" in os.environ and dist.is_available() and not dist.is_initialized():
        dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60))
    local_rank = dist.get_rank() if dist.is_initialized() else 0
    world_size = dist.get_world_size() if dist.is_initialized() else 1
    # DEBUG PRINTS for Distributed Setup
    print_master("Distributed init debug info:")
    print_master(f"RANK: {os.environ.get('RANK')}")
    print_master(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}")
    print_master(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}")
    print_master(f"MASTER_ADDR: {os.environ.get('MASTER_ADDR')}")
    print_master(f"MASTER_PORT: {os.environ.get('MASTER_PORT')}")
    if dist.is_initialized():
        print_rank(f"dist.get_rank(): {dist.get_rank()}")
        print_rank(f"dist.get_world_size(): {dist.get_world_size()}")

    for arg in sys.argv:
        if arg.startswith("--local-rank="):
            rank = arg.split("=")[1]
            sys.argv.remove(arg)
            sys.argv.append('--local_rank')
            sys.argv.append(rank)
    parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model_args: ModelArguments
    data_args: DataArguments
    training_args: TrainingArguments
    os.makedirs(data_args.encode_output_path, exist_ok=True)

    # --- Model Loading ---
    hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
    if not getattr(model_args, "model_backbone", None):
        model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type)
        setattr(model_args, 'model_backbone', model_backbone)
        setattr(training_args, 'model_backbone', model_backbone)
    print_master(f'Model Backbone: {model_args.model_backbone}')
    # --- DDP-Safe Model Loading ---
    # Step 1: Only the master process (rank 0) downloads the model.
    if local_rank == 0:
        processor = load_processor(model_args, data_args)
        model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
        print_master(f"[rank=0] Loading the model from Huggingface: {model_args.model_name}...")
    # Step 2: All processes wait here. The non-master processes will pause
    # until the master process (rank 0) finishes downloading and exits this barrier.
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
    # Step 3: Now that the model is cached, the non-master processes load it from the local cache.
    if local_rank != 0:
        print_rank(f"Loading the model from cache...")
        processor = load_processor(model_args, data_args)
        time.sleep(random.randint(2 * local_rank, 3 * local_rank))
        model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
    model.eval()
    model = model.to(training_args.device, dtype=torch.bfloat16)
    # model.set_inference_layers(qry_layers=24, tgt_layers=24)

    # # === INSERT ANALYSIS CODE HERE ===
    # if local_rank == 0: # Run analysis only on master rank
    #     # We need a dataset to run analysis. Let's use the first dataset in the config.
    #     with open(data_args.dataset_config, 'r') as yaml_file:
    #         temp_configs = yaml.safe_load(yaml_file)
        
    #     first_dataset_name = list(temp_configs.keys())[0]
    #     first_task_config = temp_configs[first_dataset_name]
        
    #     if data_args.data_basedir is not None:
    #          for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
    #             if data_args.data_basedir and first_task_config.get(key):
    #                 first_task_config[key] = os.path.join(data_args.data_basedir, first_task_config[key])
        
    #     print_master(f"--- Running Layer Analysis on {first_dataset_name} ---")
    #     analysis_dataset, _ = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **first_task_config)
        
    #     # Run the analysis
    #     run_layer_analysis(
    #         model, 
    #         analysis_dataset, 
    #         processor, 
    #         model_args, 
    #         data_args, 
    #         training_args, 
    #         data_args.encode_output_path
    #     )
    
    # if dist.is_initialized():
    #     dist.barrier()
    # # === END INSERT ===
    # === INSERT ANALYSIS CODE START ===
    if local_rank == 0: # Run analysis only on master rank
        import numpy as np # Ensure numpy is imported
        
        # Load configs
        with open(data_args.dataset_config, 'r') as yaml_file:
            analysis_configs = yaml.safe_load(yaml_file)
        
        print_master(f"\n[Global Analysis] Starting Layer-wise Analysis across {len(analysis_configs)} datasets...")
        
        all_datasets_cka = []
        all_datasets_cos = []
        dataset_names_log = []

        # Loop through ALL datasets defined in the yaml
        for d_name, d_config in analysis_configs.items():
            print_master(f"  > Analyzing dataset: {d_name} ...")
            
            # Handle path adjustment
            if data_args.data_basedir is not None:
                 for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
                    if d_config.get(key):
                        d_config[key] = os.path.join(data_args.data_basedir, d_config[key])
            
            # Instantiate dataset
            # catch potential errors to avoid crashing the whole analysis if one dataset fails
            try:
                analysis_dataset, _ = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **d_config)
                
                # Run Analysis (Reduced samples per dataset to save time, e.g., 32)
                # We collect local results but don't save individual JSONs to keep folder clean (or you can save if you want)
                res = run_layer_analysis(
                    model, 
                    analysis_dataset, 
                    processor, 
                    model_args, 
                    data_args, 
                    training_args, 
                    data_args.encode_output_path,
                    num_samples=128 # 32 samples per task is sufficient for CKA
                )
                
                if res:
                    all_datasets_cka.append(res["cka_scores"])
                    all_datasets_cos.append(res["cos_sim_with_final"])
                    dataset_names_log.append(d_name)
                    
            except Exception as e:
                print_master(f"  [Warning] Failed to analyze {d_name}: {e}")

        # Compute Averages
        if all_datasets_cka:
            avg_cka = np.mean(np.array(all_datasets_cka), axis=0).tolist()
            avg_cos = np.mean(np.array(all_datasets_cos), axis=0).tolist()
            std_cka = np.std(np.array(all_datasets_cka), axis=0).tolist() # Calculate Variance/StdDev
            
            # Save Global Results
            global_results = {
                "layers": res["layers"], # Assume all have same layers
                "analyzed_datasets": dataset_names_log,
                "avg_cka_scores": avg_cka,
                "std_cka_scores": std_cka,
                "avg_cos_sim": avg_cos,
                "individual_cka": all_datasets_cka # Save raw data if you want to plot distribution
            }
            
            save_path = os.path.join(data_args.encode_output_path, "global_layer_analysis_avg.json")
            with open(save_path, "w") as f:
                json.dump(global_results, f, indent=4)
                
            print_master(f"\n[Global Analysis] Completed! Averaged results saved to {save_path}")
            print_master(f"[Global Analysis] Avg Layer 12 CKA: {avg_cka[11]:.4f} (Std: {std_cka[11]:.4f})")
        
        else:
            print_master("[Global Analysis] No datasets were successfully analyzed.")

    if dist.is_initialized():
        dist.barrier()
    # === INSERT ANALYSIS CODE END ===
    
    with open(data_args.dataset_config, 'r') as yaml_file:
        dataset_configs = yaml.safe_load(yaml_file)


    # --- Main Evaluation Loop ---
    for dataset_idx, (dataset_name, task_config) in enumerate(dataset_configs.items()):
        # 0. load dataset
        if dist.is_initialized():
            dist.barrier()
        print_master(f"--- Evaluating {dataset_name} ---")

        query_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry")
        cand_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_tgt")
        dataset_info_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_info.jsonl")

        do_query = not os.path.exists(query_embed_path) or not os.path.exists(dataset_info_path)
        do_cand = not os.path.exists(cand_embed_path)

        if do_query or do_cand:
            if data_args.data_basedir is not None:
                # Construct full paths for data files if --data_basedir is provided
                for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
                    if data_args.data_basedir and task_config.get(key):
                        task_config[key] = os.path.join(data_args.data_basedir, task_config[key])

            full_eval_qry_dataset, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_config)
            full_eval_cand_dataset = generate_cand_dataset(full_eval_qry_dataset, corpus)
            eval_qry_dataset, eval_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
            # Pad datasets to be divisible by world_size before splitting
            if dist.is_initialized():
                padded_qry_dataset, _ = pad_dataset_to_divisible(full_eval_qry_dataset, world_size)
                padded_cand_dataset, _ = pad_dataset_to_divisible(full_eval_cand_dataset, world_size)
                eval_qry_dataset = split_dataset_by_node(padded_qry_dataset, rank=local_rank, world_size=world_size)
                eval_cand_dataset = split_dataset_by_node(padded_cand_dataset, rank=local_rank, world_size=world_size)
            else:
                padded_qry_dataset, padded_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset

        # --- 1. Compute Query Embeddings ---
        if do_query:
            print_master("Encoding queries...")
            eval_qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
            eval_qry_loader = DataLoader(eval_qry_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_qry_collator, num_workers=training_args.dataloader_num_workers)
            query_embeds, gt_infos = encode_embeddings(model, eval_qry_loader, training_args, model_args, padded_qry_dataset, encode_side="qry", description=f"Queries for {dataset_name}")
            query_embeds = query_embeds[:len(full_eval_qry_dataset)]  # world_size>1, trim the padded data points
            gt_infos = gt_infos[:len(full_eval_qry_dataset)]
            if local_rank == 0:
                with open(query_embed_path, 'wb') as f:
                    pickle.dump(query_embeds, f)
                with open(dataset_info_path, 'w') as f:
                    for info in gt_infos:
                        f.write(json.dumps(info) + '\n')
                print_master(f"Saved query embeddings to {query_embed_path}")
            if dist.is_initialized():
                dist.barrier()


        # --- 2. Compute Candidate Embeddings ---
        if do_cand:
            print_master("Encoding candidates...")
            eval_cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
            eval_cand_loader = DataLoader(eval_cand_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_cand_collator, num_workers=training_args.dataloader_num_workers)

            cand_embeds, all_cand_ids = encode_embeddings(model, eval_cand_loader, training_args, model_args, padded_cand_dataset, encode_side="cand", description=f"Candidates for {dataset_name}")
            cand_embeds = cand_embeds[:len(full_eval_cand_dataset)]  # world_size>1, trim the padded data points
            all_cand_ids = all_cand_ids[:len(full_eval_cand_dataset)]

            if local_rank == 0:
                cand_embed_dict = {cand_id: embed for cand_id, embed in zip(all_cand_ids, cand_embeds)}
                with open(cand_embed_path, 'wb') as f: pickle.dump(cand_embed_dict, f)
                print_master(f"Saved candidate embeddings to {cand_embed_path}")

        if dist.is_initialized():
            dist.barrier()

        # --- 3. Compute Scores (on master rank only) ---
        if local_rank == 0:
            score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
            if os.path.exists(score_path):
                try:
                    with open(score_path, "r") as f:
                        score_dict = json.load(f)
                    print_master(f"Score of {dataset_name} (loaded from previous run): {score_path}")
                    formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
                    print_master(formatted)
                    continue
                except Exception as e:
                    print_master(f"Failed to load score for {dataset_name}, skipping {dataset_name}")
            with open(query_embed_path, 'rb') as f: qry_embeds = pickle.load(f)
            with open(cand_embed_path, 'rb') as f: cand_embed_dict = pickle.load(f)
            gt_infos = [json.loads(l) for l in open(dataset_info_path)]
            pred_dicts = []

            rank_against_all_candidates = task_config.get("eval_type", "global") == "global"
            if rank_against_all_candidates:
                cand_keys = list(cand_embed_dict.keys())
                cand_embeds = np.stack([cand_embed_dict[key] for key in cand_keys])
                # Handle late-interaction scoring
                if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
                    qry_embed = torch.from_numpy(qry_embeds)
                    cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
                    scores = processor.score(qry_embed, cand_embeds, batch_size=64)  # use ColPali score function
                    ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()
                else: # Dense
                    cosine_scores = np.dot(qry_embeds, cand_embeds.T)
                    ranked_candids = np.argsort(-cosine_scores, axis=1)
                for qid, (ranked_candid, gt_info) in tqdm(enumerate(zip(ranked_candids, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
                    rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
                    rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
                    assert rel_scores is None or len(rel_docids) == len(rel_scores)
                    pred_dicts.append({
                        "prediction": [cand_keys[i] for i in ranked_candid],
                        "label": rel_docids,
                        "rel_scores": rel_scores,
                    })
            else:
                for qid, (qry_embed, gt_info) in tqdm(enumerate(zip(qry_embeds, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
                    cand_embeds = np.stack([cand_embed_dict[key] for key in gt_info["cand_names"]])
                    if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
                        qry_embed = torch.from_numpy(np.array(qry_embed)).unsqueeze(0)
                        cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
                        scores = processor.score(qry_embed, cand_embeds, batch_size=1024)  # use ColPali score function
                        ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()[0]
                    else:
                        cosine_score = np.dot(qry_embed, cand_embeds.T)
                        ranked_candids = np.argsort(-cosine_score)
                    rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
                    rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None

                    assert rel_scores is None or len(rel_docids) == len(rel_scores)
                    pred_dicts.append({
                        "prediction": [gt_info["cand_names"][i] for i in ranked_candids],
                        "label": rel_docids,
                        "rel_scores": rel_scores,
                    })

            score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
            pred_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_pred.jsonl")

            metrics_to_report = task_config["metrics"] if task_config.get("metrics", None) is not None else ["hit", "ndcg", "precision", "recall", "f1", "map", "mrr"]
            metrics = RankingMetrics(metrics_to_report)
            score_dict = metrics.evaluate(pred_dicts)
            formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
            score_dict["num_pred"] = len(pred_dicts)
            score_dict["num_data"] = len(gt_infos)
            print_master(f"Score of {dataset_name}:")
            print_master(formatted)
            print_master(f"Outputting final score to: {score_path}")
            with open(score_path, "w") as f:
                json.dump(score_dict, f, indent=4)
            with open(pred_path, "w") as f:
                for pred in pred_dicts:
                    f.write(json.dumps(pred) + '\n')


if __name__ == "__main__":
    main()