Alinlight / modeling_alinlight.py
muverqqw's picture
Update modeling_alinlight.py
4d0b20b verified
# -*- coding: utf-8 -*-
# Copyright 2026 EngineerGL Research.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
from typing import Optional, Tuple, List, Union
from torch.utils.checkpoint import checkpoint
from transformers import PreTrainedModel, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers.utils import logging
from configuration_alinlight import AlinlightConfig
logger = logging.get_logger(__name__)
# ==========================================
# 0. BASE PRETRAINED MODEL
# ==========================================
class AlinlightPreTrainedModel(PreTrainedModel):
config_class = AlinlightConfig
base_model_prefix = "model"
_no_split_modules = ["AlinlightDecoderLayer"]
_supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
# Scale down residual projections to improve training stability at depth
if getattr(module, '_is_residual_projection', False):
module.weight.data.normal_(mean=0.0, std=std / math.sqrt(2 * self.config.num_hidden_layers))
else:
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# ==========================================
# 1. BASE COMPONENTS
# ==========================================
class AlinlightRMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x: torch.Tensor):
input_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x.to(input_dtype)
class AlinlightRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
super().__init__()
self.dim = dim
self.base = base
self.max_position_embeddings = max_position_embeddings
self.scaling_factor = scaling_factor
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
if (hasattr(self, 'cos_cached') and
self.cos_cached.device == device and
self.cos_cached.dtype == dtype and
self.cos_cached.shape[0] >= seq_len):
return
t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.cos_cached.shape[0]:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype, device=x.device),
self.sin_cached[:seq_len].to(dtype=x.dtype, device=x.device)
)
def rotate_half(x: torch.Tensor):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# ==========================================
# 2. MLP
# ==========================================
class AlinlightMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = nn.SiLU()
self.pre_down_norm = AlinlightRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
# Tag for specialized initialization
self.down_proj._is_residual_projection = True
def forward(self, x):
intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
intermediate = self.pre_down_norm(intermediate)
return self.down_proj(intermediate)
# ==========================================
# 3. ATTENTION
# ==========================================
class AlinlightAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.sliding_window = config.sliding_window
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.o_proj._is_residual_projection = True
self.use_qk_norm = getattr(config, "use_qk_norm", True)
if self.use_qk_norm:
self.q_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.attn_logit_softcapping = getattr(config, 'attn_logit_softcapping', None)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
rotary_pos_emb: Optional[Tuple[torch.Tensor]] = None
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if self.use_qk_norm:
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
# 1. RoPE
if rotary_pos_emb is not None:
cos, sin = rotary_pos_emb
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# 2. KV Cache Update
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
# 3. Sliding Window (Slicing)
kv_seq_len = key_states.shape[2] # NOTE: This is the length BEFORE slicing
if self.sliding_window is not None and kv_seq_len > self.sliding_window:
slicing_tokens = kv_seq_len - self.sliding_window
key_states = key_states[:, :, slicing_tokens:, :]
value_states = value_states[:, :, slicing_tokens:, :]
if attention_mask is not None and attention_mask.shape[-1] == kv_seq_len:
attention_mask = attention_mask[:, :, :, slicing_tokens:]
past_key_value = (key_states, value_states) if use_cache else None
# 4. GQA Repeat
if self.num_key_value_groups > 1:
key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
# 5. Attention Mechanism
attn_weights = None
if output_attentions or self.attn_logit_softcapping is not None:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if self.attn_logit_softcapping is not None:
attn_weights = self.attn_logit_softcapping * torch.tanh(attn_weights / self.attn_logit_softcapping)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights_for_output = attn_weights if output_attentions else None
attn_weights_dropped = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights_dropped, value_states)
else:
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=False
)
attn_weights_for_output = None
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
return self.o_proj(attn_output), attn_weights_for_output, past_key_value
# ==========================================
# 4. DECODER LAYER & MODEL
# ==========================================
class AlinlightDecoderLayer(nn.Module):
def __init__(self, config, layer_idx: int):
super().__init__()
self.self_attn = AlinlightAttention(config, layer_idx=layer_idx)
self.mlp = AlinlightMLP(config)
self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.resid_pdrop = getattr(config, 'resid_pdrop', 0.0)
self.resid_dropout = nn.Dropout(self.resid_pdrop) if self.resid_pdrop > 0 else nn.Identity()
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
rotary_pos_emb=None,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
rotary_pos_emb=rotary_pos_emb
)
hidden_states = residual + self.resid_dropout(hidden_states)
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_dropout(hidden_states)
return hidden_states, attn_weights, present_key_value
class AlinlightModel(AlinlightPreTrainedModel):
def __init__(self, config: AlinlightConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.embed_scale = math.sqrt(config.hidden_size) if getattr(config, 'embed_scale', False) else 1.0
embed_pdrop = getattr(config, 'embed_pdrop', 0.0)
self.embed_dropout = nn.Dropout(embed_pdrop) if embed_pdrop > 0 else nn.Identity()
self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
scaling_factor = 1.0
if config.rope_scaling and config.rope_scaling.get("type") == "linear":
scaling_factor = config.rope_scaling.get("factor", 1.0)
self.rotary_emb = AlinlightRotaryEmbedding(
config.hidden_size // config.num_attention_heads,
max_position_embeddings=config.max_position_embeddings,
base=config.rope_theta,
scaling_factor=scaling_factor
)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self): return self.embed_tokens
def set_input_embeddings(self, value): self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
bsz, seq_len = input_shape
dtype = inputs_embeds.dtype
device = inputs_embeds.device
if attention_mask is not None:
current_mask = attention_mask[:, None, None, :].to(dtype=dtype)
else:
current_mask = torch.ones((bsz, 1, 1, seq_len), dtype=dtype, device=device)
if past_key_values_length > 0:
past_mask = torch.ones((bsz, 1, 1, past_key_values_length), dtype=dtype, device=device)
combined_mask = torch.cat([past_mask, current_mask], dim=-1)
else:
combined_mask = current_mask
inverted_mask = (1.0 - combined_mask) * torch.finfo(dtype).min
if seq_len > 1:
causal_mask = torch.triu(
torch.full((seq_len, seq_len), float("-inf"), device=device, dtype=dtype),
diagonal=1
)
if past_key_values_length > 0:
past_causal = torch.zeros((seq_len, past_key_values_length), dtype=dtype, device=device)
causal_mask = torch.cat([past_causal, causal_mask], dim=-1)
causal_mask = causal_mask[None, None, :, :]
inverted_mask = inverted_mask + causal_mask
return inverted_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# --- SAFETY CHECK FOR GRADIENT CHECKPOINTING ---
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = inputs_embeds * self.embed_scale
inputs_embeds = self.embed_dropout(inputs_embeds)
batch_size, seq_length = inputs_embeds.shape[:2]
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
total_seq_len = seq_length + past_key_values_length
cos, sin = self.rotary_emb(inputs_embeds, seq_len=total_seq_len)
if position_ids is None:
position_ids = torch.arange(
past_key_values_length, total_seq_len, dtype=torch.long, device=inputs_embeds.device
).unsqueeze(0).expand(batch_size, -1)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
next_decoder_cache = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for idx, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# Force use_cache=False inside checkpoint to be safe
return module(*inputs, output_attentions=output_attentions, use_cache=False, rotary_pos_emb=(cos, sin))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer),
hidden_states,
attention_mask,
position_ids,
past_key_value,
use_reentrant=False
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
rotary_pos_emb=(cos, sin)
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if use_cache:
next_decoder_cache += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# ==========================================
# 5. CAUSAL LM HEAD
# ==========================================
class AlinlightForCausalLM(AlinlightPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.model = AlinlightModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.final_logit_softcapping = getattr(config, 'final_logit_softcapping', None)
self.z_loss_weight = getattr(config, 'z_loss_weight', 0.0)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
# Note: self.post_init() is called here, and inside AlinlightModel.
# This re-initialization is consistent with standard HF models (e.g. Llama).
self.post_init()
def get_input_embeddings(self): return self.model.embed_tokens
def set_input_embeddings(self, value): self.model.embed_tokens = value
def get_output_embeddings(self): return self.lm_head
def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
self.model.gradient_checkpointing = True
def gradient_checkpointing_disable(self):
self.model.gradient_checkpointing = False
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **kwargs):
if past_key_values is not None:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if position_ids is None:
if past_key_values:
if attention_mask is not None:
position_ids = (attention_mask.long().sum(dim=-1) - 1).unsqueeze(-1)
else:
past_length = past_key_values[0][0].shape[2]
position_ids = torch.tensor([[past_length]], device=input_ids.device)
else:
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": True,
"position_ids": position_ids,
"attention_mask": attention_mask,
}
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
if self.final_logit_softcapping is not None:
logits = self.final_logit_softcapping * torch.tanh(logits / self.final_logit_softcapping)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
ce_loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
if self.z_loss_weight > 0 and self.training:
z_loss = torch.logsumexp(shift_logits, dim=-1).pow(2).mean()
loss = ce_loss + self.z_loss_weight * z_loss
else:
loss = ce_loss
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)