|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import warnings |
|
|
from typing import Optional, Tuple, List, Union |
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
from transformers import PreTrainedModel, GenerationMixin |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast |
|
|
from transformers.utils import logging |
|
|
from configuration_alinlight import AlinlightConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightPreTrainedModel(PreTrainedModel): |
|
|
config_class = AlinlightConfig |
|
|
base_model_prefix = "model" |
|
|
_no_split_modules = ["AlinlightDecoderLayer"] |
|
|
_supports_gradient_checkpointing = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
if getattr(module, '_is_residual_projection', False): |
|
|
module.weight.data.normal_(mean=0.0, std=std / math.sqrt(2 * self.config.num_hidden_layers)) |
|
|
else: |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
|
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.eps = eps |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
input_dtype = x.dtype |
|
|
x = x.to(torch.float32) |
|
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
|
x = x * torch.rsqrt(variance + self.eps) |
|
|
return self.weight * x.to(input_dtype) |
|
|
|
|
|
|
|
|
class AlinlightRotaryEmbedding(nn.Module): |
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.base = base |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.scaling_factor = scaling_factor |
|
|
|
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype()) |
|
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
|
if (hasattr(self, 'cos_cached') and |
|
|
self.cos_cached.device == device and |
|
|
self.cos_cached.dtype == dtype and |
|
|
self.cos_cached.shape[0] >= seq_len): |
|
|
return |
|
|
|
|
|
t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
t = t / self.scaling_factor |
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def forward(self, x, seq_len=None): |
|
|
if seq_len > self.cos_cached.shape[0]: |
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
return ( |
|
|
self.cos_cached[:seq_len].to(dtype=x.dtype, device=x.device), |
|
|
self.sin_cached[:seq_len].to(dtype=x.dtype, device=x.device) |
|
|
) |
|
|
|
|
|
|
|
|
def rotate_half(x: torch.Tensor): |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = nn.SiLU() |
|
|
self.pre_down_norm = AlinlightRMSNorm(self.intermediate_size, eps=config.rms_norm_eps) |
|
|
|
|
|
|
|
|
self.down_proj._is_residual_projection = True |
|
|
|
|
|
def forward(self, x): |
|
|
intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x) |
|
|
intermediate = self.pre_down_norm(intermediate) |
|
|
return self.down_proj(intermediate) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightAttention(nn.Module): |
|
|
def __init__(self, config, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.sliding_window = config.sliding_window |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
|
|
self.o_proj._is_residual_projection = True |
|
|
|
|
|
self.use_qk_norm = getattr(config, "use_qk_norm", True) |
|
|
if self.use_qk_norm: |
|
|
self.q_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
|
|
self.attn_logit_softcapping = getattr(config, 'attn_logit_softcapping', None) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
rotary_pos_emb: Optional[Tuple[torch.Tensor]] = None |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
if self.use_qk_norm: |
|
|
query_states = self.q_norm(query_states) |
|
|
key_states = self.k_norm(key_states) |
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None: |
|
|
cos, sin = rotary_pos_emb |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
|
|
|
if past_key_value is not None: |
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[2] |
|
|
|
|
|
if self.sliding_window is not None and kv_seq_len > self.sliding_window: |
|
|
slicing_tokens = kv_seq_len - self.sliding_window |
|
|
key_states = key_states[:, :, slicing_tokens:, :] |
|
|
value_states = value_states[:, :, slicing_tokens:, :] |
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[-1] == kv_seq_len: |
|
|
attention_mask = attention_mask[:, :, :, slicing_tokens:] |
|
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
|
|
|
if self.num_key_value_groups > 1: |
|
|
key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1) |
|
|
value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1) |
|
|
|
|
|
|
|
|
attn_weights = None |
|
|
|
|
|
if output_attentions or self.attn_logit_softcapping is not None: |
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if self.attn_logit_softcapping is not None: |
|
|
attn_weights = self.attn_logit_softcapping * torch.tanh(attn_weights / self.attn_logit_softcapping) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
|
|
|
attn_weights_for_output = attn_weights if output_attentions else None |
|
|
|
|
|
attn_weights_dropped = F.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
attn_output = torch.matmul(attn_weights_dropped, value_states) |
|
|
else: |
|
|
attn_output = F.scaled_dot_product_attention( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attn_mask=attention_mask, |
|
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
is_causal=False |
|
|
) |
|
|
attn_weights_for_output = None |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size) |
|
|
return self.o_proj(attn_output), attn_weights_for_output, past_key_value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightDecoderLayer(nn.Module): |
|
|
def __init__(self, config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.self_attn = AlinlightAttention(config, layer_idx=layer_idx) |
|
|
self.mlp = AlinlightMLP(config) |
|
|
self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.resid_pdrop = getattr(config, 'resid_pdrop', 0.0) |
|
|
self.resid_dropout = nn.Dropout(self.resid_pdrop) if self.resid_pdrop > 0 else nn.Identity() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states, |
|
|
attention_mask=None, |
|
|
position_ids=None, |
|
|
past_key_value=None, |
|
|
output_attentions=False, |
|
|
use_cache=False, |
|
|
rotary_pos_emb=None, |
|
|
**kwargs, |
|
|
): |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, attn_weights, present_key_value = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
rotary_pos_emb=rotary_pos_emb |
|
|
) |
|
|
hidden_states = residual + self.resid_dropout(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + self.resid_dropout(hidden_states) |
|
|
|
|
|
return hidden_states, attn_weights, present_key_value |
|
|
|
|
|
|
|
|
class AlinlightModel(AlinlightPreTrainedModel): |
|
|
def __init__(self, config: AlinlightConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.embed_scale = math.sqrt(config.hidden_size) if getattr(config, 'embed_scale', False) else 1.0 |
|
|
|
|
|
embed_pdrop = getattr(config, 'embed_pdrop', 0.0) |
|
|
self.embed_dropout = nn.Dropout(embed_pdrop) if embed_pdrop > 0 else nn.Identity() |
|
|
|
|
|
self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) |
|
|
self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
scaling_factor = 1.0 |
|
|
if config.rope_scaling and config.rope_scaling.get("type") == "linear": |
|
|
scaling_factor = config.rope_scaling.get("factor", 1.0) |
|
|
|
|
|
self.rotary_emb = AlinlightRotaryEmbedding( |
|
|
config.hidden_size // config.num_attention_heads, |
|
|
max_position_embeddings=config.max_position_embeddings, |
|
|
base=config.rope_theta, |
|
|
scaling_factor=scaling_factor |
|
|
) |
|
|
self.gradient_checkpointing = False |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): return self.embed_tokens |
|
|
def set_input_embeddings(self, value): self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
bsz, seq_len = input_shape |
|
|
dtype = inputs_embeds.dtype |
|
|
device = inputs_embeds.device |
|
|
|
|
|
if attention_mask is not None: |
|
|
current_mask = attention_mask[:, None, None, :].to(dtype=dtype) |
|
|
else: |
|
|
current_mask = torch.ones((bsz, 1, 1, seq_len), dtype=dtype, device=device) |
|
|
|
|
|
if past_key_values_length > 0: |
|
|
past_mask = torch.ones((bsz, 1, 1, past_key_values_length), dtype=dtype, device=device) |
|
|
combined_mask = torch.cat([past_mask, current_mask], dim=-1) |
|
|
else: |
|
|
combined_mask = current_mask |
|
|
|
|
|
inverted_mask = (1.0 - combined_mask) * torch.finfo(dtype).min |
|
|
|
|
|
if seq_len > 1: |
|
|
causal_mask = torch.triu( |
|
|
torch.full((seq_len, seq_len), float("-inf"), device=device, dtype=dtype), |
|
|
diagonal=1 |
|
|
) |
|
|
if past_key_values_length > 0: |
|
|
past_causal = torch.zeros((seq_len, past_key_values_length), dtype=dtype, device=device) |
|
|
causal_mask = torch.cat([past_causal, causal_mask], dim=-1) |
|
|
|
|
|
causal_mask = causal_mask[None, None, :, :] |
|
|
inverted_mask = inverted_mask + causal_mask |
|
|
|
|
|
return inverted_mask |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
): |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
inputs_embeds = inputs_embeds * self.embed_scale |
|
|
inputs_embeds = self.embed_dropout(inputs_embeds) |
|
|
|
|
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
|
past_key_values_length = 0 |
|
|
if past_key_values is not None: |
|
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
total_seq_len = seq_length + past_key_values_length |
|
|
cos, sin = self.rotary_emb(inputs_embeds, seq_len=total_seq_len) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = torch.arange( |
|
|
past_key_values_length, total_seq_len, dtype=torch.long, device=inputs_embeds.device |
|
|
).unsqueeze(0).expand(batch_size, -1) |
|
|
|
|
|
attention_mask = self._prepare_decoder_attention_mask( |
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
next_decoder_cache = () if use_cache else None |
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for idx, layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
def create_custom_forward(module): |
|
|
def custom_forward(*inputs): |
|
|
|
|
|
return module(*inputs, output_attentions=output_attentions, use_cache=False, rotary_pos_emb=(cos, sin)) |
|
|
return custom_forward |
|
|
|
|
|
layer_outputs = checkpoint( |
|
|
create_custom_forward(layer), |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_value, |
|
|
use_reentrant=False |
|
|
) |
|
|
else: |
|
|
layer_outputs = layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
rotary_pos_emb=(cos, sin) |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
if use_cache: |
|
|
next_decoder_cache += (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_decoder_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlinlightForCausalLM(AlinlightPreTrainedModel, GenerationMixin): |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = AlinlightModel(config) |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.final_logit_softcapping = getattr(config, 'final_logit_softcapping', None) |
|
|
self.z_loss_weight = getattr(config, 'z_loss_weight', 0.0) |
|
|
|
|
|
if config.tie_word_embeddings: |
|
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
|
|
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): return self.model.embed_tokens |
|
|
def set_input_embeddings(self, value): self.model.embed_tokens = value |
|
|
def get_output_embeddings(self): return self.lm_head |
|
|
def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings |
|
|
|
|
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): |
|
|
self.model.gradient_checkpointing = True |
|
|
|
|
|
def gradient_checkpointing_disable(self): |
|
|
self.model.gradient_checkpointing = False |
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **kwargs): |
|
|
if past_key_values is not None: |
|
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if position_ids is None: |
|
|
if past_key_values: |
|
|
if attention_mask is not None: |
|
|
position_ids = (attention_mask.long().sum(dim=-1) - 1).unsqueeze(-1) |
|
|
else: |
|
|
past_length = past_key_values[0][0].shape[2] |
|
|
position_ids = torch.tensor([[past_length]], device=input_ids.device) |
|
|
else: |
|
|
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0) |
|
|
|
|
|
return { |
|
|
"input_ids": input_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": True, |
|
|
"position_ids": position_ids, |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids=None, |
|
|
attention_mask=None, |
|
|
position_ids=None, |
|
|
past_key_values=None, |
|
|
labels=None, |
|
|
use_cache=None, |
|
|
output_attentions=None, |
|
|
output_hidden_states=None, |
|
|
return_dict=None, |
|
|
**kwargs |
|
|
): |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
**kwargs |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
if self.final_logit_softcapping is not None: |
|
|
logits = self.final_logit_softcapping * torch.tanh(logits / self.final_logit_softcapping) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
ce_loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) |
|
|
|
|
|
if self.z_loss_weight > 0 and self.training: |
|
|
z_loss = torch.logsumexp(shift_logits, dim=-1).pow(2).mean() |
|
|
loss = ce_loss + self.z_loss_weight * z_loss |
|
|
else: |
|
|
loss = ce_loss |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |