# -*- coding: utf-8 -*- # Copyright 2026 EngineerGL Research. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn import torch.nn.functional as F import warnings from typing import Optional, Tuple, List, Union from torch.utils.checkpoint import checkpoint from transformers import PreTrainedModel, GenerationMixin from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast from transformers.utils import logging from configuration_alinlight import AlinlightConfig logger = logging.get_logger(__name__) # ========================================== # 0. BASE PRETRAINED MODEL # ========================================== class AlinlightPreTrainedModel(PreTrainedModel): config_class = AlinlightConfig base_model_prefix = "model" _no_split_modules = ["AlinlightDecoderLayer"] _supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): # Scale down residual projections to improve training stability at depth if getattr(module, '_is_residual_projection', False): module.weight.data.normal_(mean=0.0, std=std / math.sqrt(2 * self.config.num_hidden_layers)) else: module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # ========================================== # 1. BASE COMPONENTS # ========================================== class AlinlightRMSNorm(nn.Module): def __init__(self, hidden_size: int, eps: float = 1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.eps = eps def forward(self, x: torch.Tensor): input_dtype = x.dtype x = x.to(torch.float32) variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.eps) return self.weight * x.to(input_dtype) class AlinlightRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): super().__init__() self.dim = dim self.base = base self.max_position_embeddings = max_position_embeddings self.scaling_factor = scaling_factor inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype()) def _set_cos_sin_cache(self, seq_len, device, dtype): if (hasattr(self, 'cos_cached') and self.cos_cached.device == device and self.cos_cached.dtype == dtype and self.cos_cached.shape[0] >= seq_len): return t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): if seq_len > self.cos_cached.shape[0]: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype, device=x.device), self.sin_cached[:seq_len].to(dtype=x.dtype, device=x.device) ) def rotate_half(x: torch.Tensor): x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # ========================================== # 2. MLP # ========================================== class AlinlightMLP(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = nn.SiLU() self.pre_down_norm = AlinlightRMSNorm(self.intermediate_size, eps=config.rms_norm_eps) # Tag for specialized initialization self.down_proj._is_residual_projection = True def forward(self, x): intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x) intermediate = self.pre_down_norm(intermediate) return self.down_proj(intermediate) # ========================================== # 3. ATTENTION # ========================================== class AlinlightAttention(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.sliding_window = config.sliding_window self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.o_proj._is_residual_projection = True self.use_qk_norm = getattr(config, "use_qk_norm", True) if self.use_qk_norm: self.q_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = AlinlightRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.attn_logit_softcapping = getattr(config, 'attn_logit_softcapping', None) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, rotary_pos_emb: Optional[Tuple[torch.Tensor]] = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.use_qk_norm: query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) # 1. RoPE if rotary_pos_emb is not None: cos, sin = rotary_pos_emb query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # 2. KV Cache Update if past_key_value is not None: key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) # 3. Sliding Window (Slicing) kv_seq_len = key_states.shape[2] # NOTE: This is the length BEFORE slicing if self.sliding_window is not None and kv_seq_len > self.sliding_window: slicing_tokens = kv_seq_len - self.sliding_window key_states = key_states[:, :, slicing_tokens:, :] value_states = value_states[:, :, slicing_tokens:, :] if attention_mask is not None and attention_mask.shape[-1] == kv_seq_len: attention_mask = attention_mask[:, :, :, slicing_tokens:] past_key_value = (key_states, value_states) if use_cache else None # 4. GQA Repeat if self.num_key_value_groups > 1: key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1) value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1) # 5. Attention Mechanism attn_weights = None if output_attentions or self.attn_logit_softcapping is not None: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if self.attn_logit_softcapping is not None: attn_weights = self.attn_logit_softcapping * torch.tanh(attn_weights / self.attn_logit_softcapping) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights_for_output = attn_weights if output_attentions else None attn_weights_dropped = F.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights_dropped, value_states) else: attn_output = F.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=False ) attn_weights_for_output = None attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size) return self.o_proj(attn_output), attn_weights_for_output, past_key_value # ========================================== # 4. DECODER LAYER & MODEL # ========================================== class AlinlightDecoderLayer(nn.Module): def __init__(self, config, layer_idx: int): super().__init__() self.self_attn = AlinlightAttention(config, layer_idx=layer_idx) self.mlp = AlinlightMLP(config) self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.resid_pdrop = getattr(config, 'resid_pdrop', 0.0) self.resid_dropout = nn.Dropout(self.resid_pdrop) if self.resid_pdrop > 0 else nn.Identity() def forward( self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, rotary_pos_emb=None, **kwargs, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, rotary_pos_emb=rotary_pos_emb ) hidden_states = residual + self.resid_dropout(hidden_states) residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.resid_dropout(hidden_states) return hidden_states, attn_weights, present_key_value class AlinlightModel(AlinlightPreTrainedModel): def __init__(self, config: AlinlightConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.embed_scale = math.sqrt(config.hidden_size) if getattr(config, 'embed_scale', False) else 1.0 embed_pdrop = getattr(config, 'embed_pdrop', 0.0) self.embed_dropout = nn.Dropout(embed_pdrop) if embed_pdrop > 0 else nn.Identity() self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps) scaling_factor = 1.0 if config.rope_scaling and config.rope_scaling.get("type") == "linear": scaling_factor = config.rope_scaling.get("factor", 1.0) self.rotary_emb = AlinlightRotaryEmbedding( config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, base=config.rope_theta, scaling_factor=scaling_factor ) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): bsz, seq_len = input_shape dtype = inputs_embeds.dtype device = inputs_embeds.device if attention_mask is not None: current_mask = attention_mask[:, None, None, :].to(dtype=dtype) else: current_mask = torch.ones((bsz, 1, 1, seq_len), dtype=dtype, device=device) if past_key_values_length > 0: past_mask = torch.ones((bsz, 1, 1, past_key_values_length), dtype=dtype, device=device) combined_mask = torch.cat([past_mask, current_mask], dim=-1) else: combined_mask = current_mask inverted_mask = (1.0 - combined_mask) * torch.finfo(dtype).min if seq_len > 1: causal_mask = torch.triu( torch.full((seq_len, seq_len), float("-inf"), device=device, dtype=dtype), diagonal=1 ) if past_key_values_length > 0: past_causal = torch.zeros((seq_len, past_key_values_length), dtype=dtype, device=device) causal_mask = torch.cat([past_causal, causal_mask], dim=-1) causal_mask = causal_mask[None, None, :, :] inverted_mask = inverted_mask + causal_mask return inverted_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # --- SAFETY CHECK FOR GRADIENT CHECKPOINTING --- if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = inputs_embeds * self.embed_scale inputs_embeds = self.embed_dropout(inputs_embeds) batch_size, seq_length = inputs_embeds.shape[:2] past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] total_seq_len = seq_length + past_key_values_length cos, sin = self.rotary_emb(inputs_embeds, seq_len=total_seq_len) if position_ids is None: position_ids = torch.arange( past_key_values_length, total_seq_len, dtype=torch.long, device=inputs_embeds.device ).unsqueeze(0).expand(batch_size, -1) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds next_decoder_cache = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # Force use_cache=False inside checkpoint to be safe return module(*inputs, output_attentions=output_attentions, use_cache=False, rotary_pos_emb=(cos, sin)) return custom_forward layer_outputs = checkpoint( create_custom_forward(layer), hidden_states, attention_mask, position_ids, past_key_value, use_reentrant=False ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, rotary_pos_emb=(cos, sin) ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if use_cache: next_decoder_cache += (layer_outputs[2],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # ========================================== # 5. CAUSAL LM HEAD # ========================================== class AlinlightForCausalLM(AlinlightPreTrainedModel, GenerationMixin): def __init__(self, config): super().__init__(config) self.model = AlinlightModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.final_logit_softcapping = getattr(config, 'final_logit_softcapping', None) self.z_loss_weight = getattr(config, 'z_loss_weight', 0.0) if config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight # Note: self.post_init() is called here, and inside AlinlightModel. # This re-initialization is consistent with standard HF models (e.g. Llama). self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): self.model.gradient_checkpointing = True def gradient_checkpointing_disable(self): self.model.gradient_checkpointing = False def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **kwargs): if past_key_values is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if position_ids is None: if past_key_values: if attention_mask is not None: position_ids = (attention_mask.long().sum(dim=-1) - 1).unsqueeze(-1) else: past_length = past_key_values[0][0].shape[2] position_ids = torch.tensor([[past_length]], device=input_ids.device) else: position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0) return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": True, "position_ids": position_ids, "attention_mask": attention_mask, } def forward( self, input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) if self.final_logit_softcapping is not None: logits = self.final_logit_softcapping * torch.tanh(logits / self.final_logit_softcapping) loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() ce_loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if self.z_loss_weight > 0 and self.training: z_loss = torch.logsumexp(shift_logits, dim=-1).pow(2).mean() loss = ce_loss + self.z_loss_weight * z_loss else: loss = ce_loss if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )