See axolotl config
axolotl version: 0.14.0.dev0
base_model: microsoft/Phi-4-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# 1. Dataset Configuration
datasets:
- path: DannyAI/African-History-QA-Dataset
split: train
type: alpaca_chat.load_qa
system_prompt: "You are a helpful AI assistant specialised in African history which gives concise answers to questions asked"
test_datasets:
- path: DannyAI/African-History-QA-Dataset
split: validation
type: alpaca_chat.load_qa
# Fixed the missing quote and indentation below
system_prompt: "You are a helpful AI assistant specialised in African history which gives concise answers to questions asked"
# 2. Output & Chat Configuration
output_dir: ./phi4_african_history_lora_out
chat_template: tokenizer_default
train_on_inputs: false
# 3. Batch Size Configuration
micro_batch_size: 2
gradient_accumulation_steps: 4
# 4. LoRA Configuration
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: [q_proj, v_proj, k_proj, o_proj]
# 5. Hardware & Efficiency
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
bf16: true
fp16: false
# 6. Training Duration & Optimizer
max_steps: 650
# removed
# num_epochs:
warmup_steps: 20
learning_rate: 0.00002
optimizer: adamw_torch
lr_scheduler: cosine
# 7. Logging & Evaluation
wandb_project: phi4_african_history
wandb_name: phi4_lora_axolotl
eval_strategy: steps
eval_steps: 50
save_strategy: steps
save_steps: 100
logging_steps: 5
# 8. Public Hugging Face Hub Upload
hub_model_id: DannyAI/phi4_lora_axolotl
push_adapter_to_hub: true
hub_private_repo: false
Model Card for Model ID
This is a LoRA fine-tuned version of microsoft/Phi-4-mini-instruct for African History using the DannyAI/African-History-QA-Dataset dataset. It achieves a loss value of 1.7479 on the validation set
Model Details
Model Description
- Developed by: Daniel Ihenacho
- Funded by: Daniel Ihenacho
- Shared by: Daniel Ihenacho
- Model type: Text Generation
- Language(s) (NLP): English
- License: mit
- Finetuned from model: microsoft/Phi-4-mini-instruct
Uses
This can be used for QA datasets about African History
Out-of-Scope Use
Can be used beyond African History but should not.
How to Get Started with the Model
from transformers import pipeline
from transformers import (
AutoTokenizer,
AutoModelForCausalLM)
from peft import PeftModel
model_id = "microsoft/Phi-4-mini-instruct"
tokeniser = AutoTokenizer.from_pretrained(model_id)
# load base model
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map = "auto",
torch_dtype = torch.bfloat16,
trust_remote_code = False
)
# Load the fine-tuned LoRA model
lora_id = "DannyAI/phi4_lora_axolotl"
lora_model = PeftModel.from_pretrained(
model,lora_id
)
generator = pipeline(
"text-generation",
model=lora_model,
tokenizer=tokeniser,
)
question = "What is the significance of African feminist scholarly activism in contemporary resistance movements?"
def generate_answer(question)->str:
"""Generates an answer for the given question using the fine-tuned LoRA model.
"""
messages = [
{"role": "system", "content": "You are a helpful AI assistant specialised in African history which gives concise answers to questions asked."},
{"role": "user", "content": question}
]
output = generator(
messages,
max_new_tokens=2048,
temperature=0.1,
do_sample=False,
return_full_text=False
)
return output[0]['generated_text'].strip()
# Example output
African feminist scholarly activism is significant in contemporary resistance movements as it provides a critical framework for understanding and addressing the specific challenges faced by African women in the context of global capitalism, neocolonialism, and patriarchal structures.
Training Details
Training results
| Training Loss | Epoch | Step | Validation Loss | Ppl | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 2.1184 | 8.3175 | 14.82 | 14.82 | 15.37 |
| 5.394 | 3.8627 | 50 | 2.1004 | 8.1694 | 14.84 | 14.84 | 31.82 |
| 4.4484 | 7.7059 | 100 | 2.0367 | 7.6652 | 14.84 | 14.84 | 31.84 |
| 3.7583 | 11.5490 | 150 | 1.9785 | 7.2316 | 14.84 | 14.84 | 31.84 |
| 3.363 | 15.3922 | 200 | 1.9299 | 6.8886 | 14.84 | 14.84 | 31.84 |
| 3.0568 | 19.2353 | 250 | 1.8664 | 6.4652 | 14.84 | 14.84 | 31.84 |
| 2.8736 | 23.0784 | 300 | 1.8134 | 6.1314 | 14.84 | 14.84 | 31.79 |
| 2.7646 | 26.9412 | 350 | 1.7851 | 5.9604 | 14.84 | 14.84 | 31.79 |
| 2.6891 | 30.7843 | 400 | 1.7668 | 5.8523 | 14.84 | 14.84 | 31.79 |
| 2.6843 | 34.6275 | 450 | 1.7581 | 5.8014 | 14.84 | 14.84 | 31.79 |
| 2.6048 | 38.4706 | 500 | 1.7534 | 5.7739 | 14.84 | 14.84 | 31.79 |
| 2.6118 | 42.3137 | 550 | 1.7505 | 5.7573 | 14.84 | 14.84 | 31.79 |
| 2.6024 | 46.1569 | 600 | 1.7503 | 5.7565 | 14.84 | 14.84 | 31.79 |
| 2.5727 | 50.0 | 650 | 1.7479 | 5.7428 | 14.84 | 14.84 | 31.79 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 650
Lora Configuration
- r: 8
- lora_alpha: 16
- target_modules: ["q_proj", "v_proj", "k_proj", "o_proj"]
- lora_dropout: 0.05 # dataset is small, hence a low dropout value
- bias: "none"
- task_type: "CAUSAL_LM"
Evaluation
Metrics
| Models | Bert Score | TinyMMLU | TinyTrufulQA |
|---|---|---|---|
| Base model | 0.88868 | 0.6837 | 0.49745 |
| Fine tuned Model | 0.88981 | 0.67371 | 0.46626 |
Compute Infrastructure
Hardware
Runpod A40 GPU instance
Framework versions
- PEFT 0.18.1
- Transformers 4.57.6
- Pytorch 2.9.1+cu128
- Datasets 4.5.0
- Tokenizers 0.22.2
Citation
If you use this dataset, please cite:
@Model{
Ihenacho2026phi4_lora_axolotl,
author = {Daniel Ihenacho},
title = {phi4_lora_axolotl},
year = {2026},
publisher = {Hugging Face Models},
url = {https://huggingface.co/DannyAI/phi4_lora_axolotl},
urldate = {2026-01-27},
}
Model Card Authors
Daniel Ihenacho
Model Card Contact
- Downloads last month
- 12
Model tree for DannyAI/phi4_lora_axolotl
Base model
microsoft/Phi-4-mini-instruct