CompactAI's picture
Upload folder using huggingface_hub
7c07d2f verified
---
license: apache-2.0
tags:
- pruned
- python
- optimized
- wanda
base_model: Qwen/Qwen2.5-0.5B
pipeline_tag: text-generation
---
# Qwen2.5-0.5B-python-aggressive
> 🎯 **PYTHON-optimized** | πŸ“¦ **Aggressive** pruning | ⚑ **1% weights pruned**
This model is a **aggressively pruned** version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B).
## Performance Comparison
| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| **Python** | 0.0% | 0.0% ⭐ | β†’ |
| Html | 0.0% | 0.0% | β†’ |
| Trivia | 100.0% | 100.0% | β†’ |
| Math | 66.7% | 66.7% | β†’ |
| Reasoning | 66.7% | 66.7% | β†’ |
| Medical | 66.7% | 66.7% | β†’ |
| Linux | 33.3% | 33.3% | β†’ |
| Writing | 33.3% | 50.0% | ↑ 16.7% |
**Average**: 45.8% β†’ 47.9% (+2.1%)
![Comparison Graph](comparison_graph.png)
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CompactAI/Qwen2.5-0.5B-python-aggressive")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/Qwen2.5-0.5B-python-aggressive")
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
| Property | Value |
|----------|-------|
| Base Model | [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) |
| Specialization | Python |
| Prune Mode | Aggressive |
| Weight Reduction | 1% weights pruned |
## License
This model inherits the license from the base model.