BiliSakura's picture
Update all files for BitDance-ImageNet-diffusers
46df95c verified
---
license: apache-2.0
library_name: diffusers
pipeline_tag: unconditional-image-generation
base_model: shallowdream204/BitDance-ImageNet
language:
- en
tags:
- bitdance
- imagenet
- class-conditional
- custom-pipeline
- diffusers
---
# BitDance-ImageNet (Diffusers)
Diffusers-compatible BitDance ImageNet checkpoints for class-conditional generation at `256x256`.
## Available Subfolders
- `BitDance_B_1x` (`parallel_num=1`)
- `BitDance_B_4x` (`parallel_num=4`)
- `BitDance_B_16x` (`parallel_num=16`)
- `BitDance_L_1x` (`parallel_num=1`)
- `BitDance_H_1x` (`parallel_num=1`)
All variants include a custom `BitDanceImageNetPipeline` and support ImageNet class IDs (`0-999`).
## Requirements
- `flash-attn` is required for model execution and sampling.
- Install it in your environment before loading the pipeline.
## Quickstart (native diffusers)
```python
import torch
from diffusers import DiffusionPipeline
repo_id = "BiliSakura/BitDance-ImageNet-diffusers"
subfolder = "BitDance_B_1x" # or BitDance_B_4x, BitDance_B_16x, BitDance_L_1x, BitDance_H_1x
pipe = DiffusionPipeline.from_pretrained(
repo_id,
subfolder=subfolder,
trust_remote_code=True,
torch_dtype=torch.float16,
).to("cuda")
# ImageNet class 207 = golden retriever
out = pipe(
class_labels=207,
num_images_per_label=1,
sample_steps=100,
cfg_scale=4.6,
)
out.images[0].save("bitdance_imagenet.png")
```
## Local Path Note
When loading from a local clone, do not point `from_pretrained` to the repo root unless you also provide `subfolder=...`.
Each variant folder contains its own `model_index.json`, so the most reliable local usage is to load the variant directory directly:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"/path/to/BitDance-ImageNet-diffusers/BitDance_B_1x",
trust_remote_code=True,
)
```
## Model Metadata
- Pipeline class: `BitDanceImageNetPipeline`
- Diffusers version in configs: `0.36.0`
- Resolution: `256x256`
- Number of classes: `1000`
- Autoencoder class: `BitDanceImageNetAutoencoder`
## Citation
If you use this model, please cite BitDance and Diffusers:
```bibtex
@article{ai2026bitdance,
title = {BitDance: Scaling Autoregressive Generative Models with Binary Tokens},
author = {Ai, Yuang and Han, Jiaming and Zhuang, Shaobin and Hu, Xuefeng and Yang, Ziyan and Yang, Zhenheng and Huang, Huaibo and Yue, Xiangyu and Chen, Hao},
journal = {arXiv preprint arXiv:2602.14041},
year = {2026}
}
@inproceedings{von-platen-etal-2022-diffusers,
title = {Diffusers: State-of-the-art diffusion models},
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Damar Jablonski and Hernan Bischof and Thomas Wolf},
booktitle = {GitHub repository},
year = {2022},
url = {https://github.com/huggingface/diffusers}
}
```
## License
This repository is distributed under the Apache-2.0 license, consistent with the upstream BitDance release.