|
|
--- |
|
|
license: apache-2.0 |
|
|
library_name: diffusers |
|
|
pipeline_tag: unconditional-image-generation |
|
|
base_model: shallowdream204/BitDance-ImageNet |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- bitdance |
|
|
- imagenet |
|
|
- class-conditional |
|
|
- custom-pipeline |
|
|
- diffusers |
|
|
--- |
|
|
|
|
|
# BitDance-ImageNet (Diffusers) |
|
|
|
|
|
Diffusers-compatible BitDance ImageNet checkpoints for class-conditional generation at `256x256`. |
|
|
|
|
|
## Available Subfolders |
|
|
|
|
|
- `BitDance_B_1x` (`parallel_num=1`) |
|
|
- `BitDance_B_4x` (`parallel_num=4`) |
|
|
- `BitDance_B_16x` (`parallel_num=16`) |
|
|
- `BitDance_L_1x` (`parallel_num=1`) |
|
|
- `BitDance_H_1x` (`parallel_num=1`) |
|
|
|
|
|
All variants include a custom `BitDanceImageNetPipeline` and support ImageNet class IDs (`0-999`). |
|
|
|
|
|
## Requirements |
|
|
|
|
|
- `flash-attn` is required for model execution and sampling. |
|
|
- Install it in your environment before loading the pipeline. |
|
|
|
|
|
## Quickstart (native diffusers) |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
repo_id = "BiliSakura/BitDance-ImageNet-diffusers" |
|
|
subfolder = "BitDance_B_1x" # or BitDance_B_4x, BitDance_B_16x, BitDance_L_1x, BitDance_H_1x |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
|
repo_id, |
|
|
subfolder=subfolder, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16, |
|
|
).to("cuda") |
|
|
|
|
|
# ImageNet class 207 = golden retriever |
|
|
out = pipe( |
|
|
class_labels=207, |
|
|
num_images_per_label=1, |
|
|
sample_steps=100, |
|
|
cfg_scale=4.6, |
|
|
) |
|
|
out.images[0].save("bitdance_imagenet.png") |
|
|
``` |
|
|
|
|
|
## Local Path Note |
|
|
|
|
|
When loading from a local clone, do not point `from_pretrained` to the repo root unless you also provide `subfolder=...`. |
|
|
Each variant folder contains its own `model_index.json`, so the most reliable local usage is to load the variant directory directly: |
|
|
|
|
|
```python |
|
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
|
"/path/to/BitDance-ImageNet-diffusers/BitDance_B_1x", |
|
|
trust_remote_code=True, |
|
|
) |
|
|
``` |
|
|
|
|
|
## Model Metadata |
|
|
|
|
|
- Pipeline class: `BitDanceImageNetPipeline` |
|
|
- Diffusers version in configs: `0.36.0` |
|
|
- Resolution: `256x256` |
|
|
- Number of classes: `1000` |
|
|
- Autoencoder class: `BitDanceImageNetAutoencoder` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this model, please cite BitDance and Diffusers: |
|
|
|
|
|
```bibtex |
|
|
@article{ai2026bitdance, |
|
|
title = {BitDance: Scaling Autoregressive Generative Models with Binary Tokens}, |
|
|
author = {Ai, Yuang and Han, Jiaming and Zhuang, Shaobin and Hu, Xuefeng and Yang, Ziyan and Yang, Zhenheng and Huang, Huaibo and Yue, Xiangyu and Chen, Hao}, |
|
|
journal = {arXiv preprint arXiv:2602.14041}, |
|
|
year = {2026} |
|
|
} |
|
|
|
|
|
@inproceedings{von-platen-etal-2022-diffusers, |
|
|
title = {Diffusers: State-of-the-art diffusion models}, |
|
|
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Damar Jablonski and Hernan Bischof and Thomas Wolf}, |
|
|
booktitle = {GitHub repository}, |
|
|
year = {2022}, |
|
|
url = {https://github.com/huggingface/diffusers} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This repository is distributed under the Apache-2.0 license, consistent with the upstream BitDance release. |
|
|
|