|
|
import torch |
|
|
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer |
|
|
from diffusers import AutoencoderKL |
|
|
from huggingface_hub import hf_hub_download |
|
|
from safetensors.torch import load_file |
|
|
|
|
|
|
|
|
t5_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") |
|
|
t5_model = T5EncoderModel.from_pretrained("google/flan-t5-base").to("cuda", torch.bfloat16) |
|
|
|
|
|
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
|
clip_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to("cuda", torch.bfloat16) |
|
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
"black-forest-labs/FLUX.1-schnell", |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.bfloat16 |
|
|
).to("cuda") |
|
|
|
|
|
|
|
|
model_py = hf_hub_download("AbstractPhil/tiny-flux-deep", "scripts/model_v4.py") |
|
|
exec(open(model_py).read()) |
|
|
|
|
|
config = TinyFluxConfig( |
|
|
use_sol_prior=False, |
|
|
use_t5_vec=False, |
|
|
) |
|
|
model = TinyFluxDeep(config).to("cuda", torch.bfloat16) |
|
|
weights = load_file(hf_hub_download("AbstractPhil/tiny-flux-deep", "checkpoint_runs/v4_init/lailah_401434_v4_init.safetensors")) |
|
|
model.load_state_dict(weights, strict=False) |
|
|
model.eval() |
|
|
|
|
|
def encode_prompt(prompt): |
|
|
"""Encode prompt with both T5 and CLIP.""" |
|
|
|
|
|
t5_tokens = t5_tokenizer(prompt, return_tensors="pt", padding="max_length", |
|
|
max_length=77, truncation=True).to("cuda") |
|
|
with torch.no_grad(): |
|
|
t5_emb = t5_model(**t5_tokens).last_hidden_state.to(torch.bfloat16) |
|
|
|
|
|
|
|
|
clip_tokens = clip_tokenizer(prompt, return_tensors="pt", padding="max_length", |
|
|
max_length=77, truncation=True).to("cuda") |
|
|
with torch.no_grad(): |
|
|
clip_out = clip_model(**clip_tokens) |
|
|
clip_pooled = clip_out.pooler_output.to(torch.bfloat16) |
|
|
|
|
|
return t5_emb, clip_pooled |
|
|
|
|
|
|
|
|
def flux_shift(t, s=3.0): |
|
|
"""Flux-style timestep shift.""" |
|
|
return s * t / (1 + (s - 1) * t) |
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def generate_image(prompt, num_steps=25, cfg_scale=4.0, seed=None): |
|
|
""" |
|
|
Euler sampling for rectified flow. |
|
|
|
|
|
Flow matching formulation: |
|
|
x_t = (1 - t) * noise + t * data |
|
|
At t=0: pure noise |
|
|
At t=1: pure data |
|
|
Velocity v = data - noise (constant) |
|
|
|
|
|
Sampling: Integrate from t=0 (noise) → t=1 (data) |
|
|
""" |
|
|
if seed is not None: |
|
|
torch.manual_seed(seed) |
|
|
|
|
|
t5_emb, clip_pooled = encode_prompt(prompt) |
|
|
t5_null, clip_null = encode_prompt("") |
|
|
|
|
|
|
|
|
x = torch.randn(1, 64*64, 16, device="cuda", dtype=torch.bfloat16) |
|
|
img_ids = TinyFluxDeep.create_img_ids(1, 64, 64, "cuda") |
|
|
|
|
|
|
|
|
t_linear = torch.linspace(0, 1, num_steps + 1, device="cuda", dtype=torch.float32) |
|
|
timesteps = flux_shift(t_linear, s=3.0) |
|
|
|
|
|
for i in range(num_steps): |
|
|
t_curr = timesteps[i] |
|
|
t_next = timesteps[i + 1] |
|
|
dt = t_next - t_curr |
|
|
|
|
|
t_batch = t_curr.unsqueeze(0) |
|
|
|
|
|
|
|
|
v_cond = model(x, t5_emb, clip_pooled, t_batch, img_ids) |
|
|
v_uncond = model(x, t5_null, clip_null, t_batch, img_ids) |
|
|
|
|
|
|
|
|
v = v_uncond + cfg_scale * (v_cond - v_uncond) |
|
|
|
|
|
|
|
|
x = x + v * dt |
|
|
|
|
|
|
|
|
x = x.reshape(1, 64, 64, 16).permute(0, 3, 1, 2) |
|
|
x = x / vae.config.scaling_factor |
|
|
image = vae.decode(x).sample |
|
|
|
|
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
image = image[0].permute(1, 2, 0).cpu().float().numpy() |
|
|
image = (image * 255).astype("uint8") |
|
|
|
|
|
from PIL import Image |
|
|
return Image.fromarray(image) |
|
|
|
|
|
|
|
|
|
|
|
image = generate_image("a photograph of a tiger in natural habitat", seed=42) |
|
|
image.save("tiger.png") |
|
|
image |