import torch from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL from huggingface_hub import hf_hub_download from safetensors.torch import load_file # Load text encoders t5_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") t5_model = T5EncoderModel.from_pretrained("google/flan-t5-base").to("cuda", torch.bfloat16) clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") clip_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to("cuda", torch.bfloat16) # Load VAE vae = AutoencoderKL.from_pretrained( "black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=torch.bfloat16 ).to("cuda") # Load TinyFlux-Deep model_py = hf_hub_download("AbstractPhil/tiny-flux-deep", "scripts/model_v4.py") exec(open(model_py).read()) config = TinyFluxConfig( use_sol_prior=False, # Disabled until trained use_t5_vec=False, # Disabled until trained ) model = TinyFluxDeep(config).to("cuda", torch.bfloat16) weights = load_file(hf_hub_download("AbstractPhil/tiny-flux-deep", "checkpoint_runs/v4_init/lailah_401434_v4_init.safetensors")) model.load_state_dict(weights, strict=False) model.eval() def encode_prompt(prompt): """Encode prompt with both T5 and CLIP.""" # T5 t5_tokens = t5_tokenizer(prompt, return_tensors="pt", padding="max_length", max_length=77, truncation=True).to("cuda") with torch.no_grad(): t5_emb = t5_model(**t5_tokens).last_hidden_state.to(torch.bfloat16) # CLIP clip_tokens = clip_tokenizer(prompt, return_tensors="pt", padding="max_length", max_length=77, truncation=True).to("cuda") with torch.no_grad(): clip_out = clip_model(**clip_tokens) clip_pooled = clip_out.pooler_output.to(torch.bfloat16) return t5_emb, clip_pooled def flux_shift(t, s=3.0): """Flux-style timestep shift.""" return s * t / (1 + (s - 1) * t) @torch.inference_mode() def generate_image(prompt, num_steps=25, cfg_scale=4.0, seed=None): """ Euler sampling for rectified flow. Flow matching formulation: x_t = (1 - t) * noise + t * data At t=0: pure noise At t=1: pure data Velocity v = data - noise (constant) Sampling: Integrate from t=0 (noise) → t=1 (data) """ if seed is not None: torch.manual_seed(seed) t5_emb, clip_pooled = encode_prompt(prompt) t5_null, clip_null = encode_prompt("") # Start from pure noise (t=0) x = torch.randn(1, 64*64, 16, device="cuda", dtype=torch.bfloat16) img_ids = TinyFluxDeep.create_img_ids(1, 64, 64, "cuda") # Timesteps: 0 → 1 with Flux shift t_linear = torch.linspace(0, 1, num_steps + 1, device="cuda", dtype=torch.float32) timesteps = flux_shift(t_linear, s=3.0) for i in range(num_steps): t_curr = timesteps[i] t_next = timesteps[i + 1] dt = t_next - t_curr # Positive, moving toward data t_batch = t_curr.unsqueeze(0) # Predict velocity v_cond = model(x, t5_emb, clip_pooled, t_batch, img_ids) v_uncond = model(x, t5_null, clip_null, t_batch, img_ids) # Classifier-free guidance v = v_uncond + cfg_scale * (v_cond - v_uncond) # Euler step: x_{t+dt} = x_t + v * dt x = x + v * dt # Decode with VAE x = x.reshape(1, 64, 64, 16).permute(0, 3, 1, 2) # [B, C, H, W] x = x / vae.config.scaling_factor image = vae.decode(x).sample # Convert to PIL image = (image / 2 + 0.5).clamp(0, 1) image = image[0].permute(1, 2, 0).cpu().float().numpy() image = (image * 255).astype("uint8") from PIL import Image return Image.fromarray(image) # Generate image = generate_image("a photograph of a tiger in natural habitat", seed=42) image.save("tiger.png") image