tiny-flux-deep / scripts /inference_v3.py
AbstractPhil's picture
Rename inference_v3.py to scripts/inference_v3.py
f9a1df2 verified
# ============================================================================
# TinyFlux-Deep Inference Cell - With ExpertPredictor
# ============================================================================
# Run the model cell before this one (defines TinyFluxDeep, TinyFluxDeepConfig)
# Loads from: AbstractPhil/tiny-flux-deep or local checkpoint
#
# The ExpertPredictor runs standalone at inference - no SD1.5-flow needed.
# It predicts timestep expertise from (time_emb, clip_pooled).
# ============================================================================
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL
from PIL import Image
import numpy as np
import os
# ============================================================================
# CONFIG
# ============================================================================
DEVICE = "cuda"
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
# Model loading
HF_REPO = "AbstractPhil/tiny-flux-deep"
# stable v3 step_316875
LOAD_FROM = "hub:step_346875" # "hub", "hub:step_XXXXX", "hub:step_XXXXX_ema", "local:/path/to/weights.safetensors"
# Generation settings
NUM_STEPS = 50
GUIDANCE_SCALE = 5.0 # Note: this is now just for CFG, not the broken guidance_in
HEIGHT = 512
WIDTH = 512
SEED = None
SHIFT = 3.0
# Model architecture (must match training)
USE_EXPERT_PREDICTOR = True
EXPERT_DIM = 1280
EXPERT_HIDDEN_DIM = 512
# ============================================================================
# LOAD TEXT ENCODERS
# ============================================================================
print("Loading text encoders...")
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_enc = T5EncoderModel.from_pretrained("google/flan-t5-base", torch_dtype=DTYPE).to(DEVICE).eval()
clip_tok = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_enc = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=DTYPE).to(DEVICE).eval()
# ============================================================================
# LOAD VAE
# ============================================================================
print("Loading Flux VAE...")
vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
subfolder="vae",
torch_dtype=DTYPE
).to(DEVICE).eval()
# ============================================================================
# LOAD TINYFLUX-DEEP MODEL
# ============================================================================
print(f"Loading TinyFlux-Deep from: {LOAD_FROM}")
# Config with ExpertPredictor (no guidance_embeds)
config = TinyFluxDeepConfig(
use_expert_predictor=USE_EXPERT_PREDICTOR,
expert_dim=EXPERT_DIM,
expert_hidden_dim=EXPERT_HIDDEN_DIM,
guidance_embeds=False, # Replaced by expert_predictor
)
model = TinyFluxDeep(config).to(DEVICE).to(DTYPE)
# Keys to handle during loading
DEPRECATED_KEYS = {
'time_in.sin_basis',
'guidance_in.sin_basis',
'guidance_in.mlp.0.weight',
'guidance_in.mlp.0.bias',
'guidance_in.mlp.2.weight',
'guidance_in.mlp.2.bias',
}
def load_weights(path):
"""Load weights from .safetensors or .pt file."""
if path.endswith(".safetensors"):
state_dict = load_file(path)
elif path.endswith(".pt"):
ckpt = torch.load(path, map_location=DEVICE, weights_only=False)
if isinstance(ckpt, dict):
if "model" in ckpt:
state_dict = ckpt["model"]
elif "state_dict" in ckpt:
state_dict = ckpt["state_dict"]
else:
state_dict = ckpt
else:
state_dict = ckpt
else:
try:
state_dict = load_file(path)
except:
state_dict = torch.load(path, map_location=DEVICE, weights_only=False)
# Strip "_orig_mod." prefix from keys (added by torch.compile)
if any(k.startswith("_orig_mod.") for k in state_dict.keys()):
print(" Stripping torch.compile prefix...")
state_dict = {k.replace("_orig_mod.", ""): v for k, v in state_dict.items()}
return state_dict
def load_model_weights(model, weights, source_name):
"""Load weights with architecture upgrade support."""
model_state = model.state_dict()
loaded = []
skipped_deprecated = []
skipped_shape = []
missing_new = []
# Load matching weights
for k, v in weights.items():
if k in DEPRECATED_KEYS or k.startswith('guidance_in.'):
skipped_deprecated.append(k)
elif k in model_state:
if v.shape == model_state[k].shape:
model_state[k] = v
loaded.append(k)
else:
skipped_shape.append((k, v.shape, model_state[k].shape))
else:
# Key not in model (maybe old architecture)
skipped_deprecated.append(k)
# Find new keys not in checkpoint
for k in model_state:
if k not in weights and not any(k.startswith(d.split('.')[0]) for d in DEPRECATED_KEYS if '.' in d):
missing_new.append(k)
# Apply loaded weights
model.load_state_dict(model_state, strict=False)
# Report
print(f" ✓ Loaded: {len(loaded)} weights")
if skipped_deprecated:
print(f" ✓ Skipped deprecated: {len(skipped_deprecated)} (guidance_in, etc)")
if skipped_shape:
print(f" ⚠ Shape mismatch: {len(skipped_shape)}")
for k, old, new in skipped_shape[:3]:
print(f" {k}: {old} vs {new}")
if missing_new:
# Group by module
modules = set(k.split('.')[0] for k in missing_new)
print(f" ℹ New modules (fresh init): {modules}")
print(f"✓ Loaded from {source_name}")
if LOAD_FROM == "hub":
try:
weights_path = hf_hub_download(repo_id=HF_REPO, filename="model.safetensors")
except:
weights_path = hf_hub_download(repo_id=HF_REPO, filename="model.pt")
weights = load_weights(weights_path)
load_model_weights(model, weights, HF_REPO)
elif LOAD_FROM.startswith("hub:"):
ckpt_name = LOAD_FROM[4:]
for ext in [".safetensors", ".pt", ""]:
try:
if ckpt_name.endswith((".safetensors", ".pt")):
filename = ckpt_name if "/" in ckpt_name else f"checkpoints/{ckpt_name}"
else:
filename = f"checkpoints/{ckpt_name}{ext}"
weights_path = hf_hub_download(repo_id=HF_REPO, filename=filename)
weights = load_weights(weights_path)
load_model_weights(model, weights, f"{HF_REPO}/{filename}")
break
except Exception as e:
continue
else:
raise ValueError(f"Could not find checkpoint: {ckpt_name}")
elif LOAD_FROM.startswith("local:"):
weights_path = LOAD_FROM[6:]
weights = load_weights(weights_path)
load_model_weights(model, weights, weights_path)
else:
raise ValueError(f"Unknown LOAD_FROM: {LOAD_FROM}")
model.eval()
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
expert_params = sum(p.numel() for p in model.expert_predictor.parameters()) if model.expert_predictor else 0
print(f"Model params: {total_params:,} (expert_predictor: {expert_params:,})")
# ============================================================================
# ENCODING FUNCTIONS
# ============================================================================
@torch.inference_mode()
def encode_prompt(prompt: str, max_length: int = 128):
"""Encode prompt with flan-t5-base and CLIP-L."""
t5_in = t5_tok(
prompt,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).to(DEVICE)
t5_out = t5_enc(
input_ids=t5_in.input_ids,
attention_mask=t5_in.attention_mask
).last_hidden_state
clip_in = clip_tok(
prompt,
max_length=77,
padding="max_length",
truncation=True,
return_tensors="pt"
).to(DEVICE)
clip_out = clip_enc(
input_ids=clip_in.input_ids,
attention_mask=clip_in.attention_mask
)
clip_pooled = clip_out.pooler_output
return t5_out.to(DTYPE), clip_pooled.to(DTYPE)
# ============================================================================
# FLOW MATCHING HELPERS
# ============================================================================
def flux_shift(t, s=SHIFT):
"""Flux timestep shift - biases towards higher t (closer to data)."""
return s * t / (1 + (s - 1) * t)
# ============================================================================
# EULER DISCRETE FLOW MATCHING SAMPLER
# ============================================================================
@torch.inference_mode()
def euler_sample(
model,
prompt: str,
negative_prompt: str = "",
num_steps: int = 28,
guidance_scale: float = 3.5,
height: int = 512,
width: int = 512,
seed: int = None,
):
"""
Euler discrete sampler for rectified flow matching.
Flow Matching formulation:
x_t = (1 - t) * noise + t * data
At t=0: noise, At t=1: data
Velocity v = data - noise (constant)
Sampling: Integrate from t=0 (noise) to t=1 (data)
With ExpertPredictor:
- No guidance embedding needed
- Expert predictor runs internally from (time_emb, clip_pooled)
- CFG still works via positive/negative prompt difference
"""
if seed is not None:
torch.manual_seed(seed)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
else:
generator = None
H_lat = height // 8
W_lat = width // 8
C_lat = 16
# Encode prompts
t5_cond, clip_cond = encode_prompt(prompt)
if guidance_scale > 1.0 and negative_prompt is not None:
t5_uncond, clip_uncond = encode_prompt(negative_prompt)
else:
t5_uncond, clip_uncond = None, None
# Start from pure noise (t=0)
x = torch.randn(1, H_lat * W_lat, C_lat, device=DEVICE, dtype=DTYPE, generator=generator)
# Create image position IDs
img_ids = TinyFluxDeep.create_img_ids(1, H_lat, W_lat, DEVICE)
# Timesteps: 0 → 1 with flux shift
t_linear = torch.linspace(0, 1, num_steps + 1, device=DEVICE, dtype=DTYPE)
timesteps = flux_shift(t_linear, s=SHIFT)
print(f"Sampling with {num_steps} Euler steps (t: 0→1, shifted)...")
for i in range(num_steps):
t_curr = timesteps[i]
t_next = timesteps[i + 1]
dt = t_next - t_curr
t_batch = t_curr.unsqueeze(0)
# Predict velocity (no guidance embedding, expert_predictor runs internally)
v_cond = model(
hidden_states=x,
encoder_hidden_states=t5_cond,
pooled_projections=clip_cond,
timestep=t_batch,
img_ids=img_ids,
# No guidance parameter - ExpertPredictor handles timestep awareness
# No expert_features - predictor runs standalone at inference
)
# Classifier-free guidance (true CFG via prompt difference)
if guidance_scale > 1.0 and t5_uncond is not None:
v_uncond = model(
hidden_states=x,
encoder_hidden_states=t5_uncond,
pooled_projections=clip_uncond,
timestep=t_batch,
img_ids=img_ids,
)
v = v_uncond + guidance_scale * (v_cond - v_uncond)
else:
v = v_cond
# Euler step: x_{t+dt} = x_t + v * dt
x = x + v * dt
if (i + 1) % max(1, num_steps // 5) == 0 or i == num_steps - 1:
print(f" Step {i+1}/{num_steps}, t={t_next.item():.3f}")
# Reshape: (1, H*W, C) -> (1, C, H, W)
latents = x.reshape(1, H_lat, W_lat, C_lat).permute(0, 3, 1, 2)
return latents
# ============================================================================
# DECODE LATENTS TO IMAGE
# ============================================================================
@torch.inference_mode()
def decode_latents(latents):
"""Decode VAE latents to PIL Image."""
latents = latents / vae.config.scaling_factor
image = vae.decode(latents.to(vae.dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image[0].float().permute(1, 2, 0).cpu().numpy()
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
# ============================================================================
# MAIN GENERATION FUNCTION
# ============================================================================
def generate(
prompt: str,
negative_prompt: str = "",
num_steps: int = NUM_STEPS,
guidance_scale: float = GUIDANCE_SCALE,
height: int = HEIGHT,
width: int = WIDTH,
seed: int = SEED,
save_path: str = None,
):
"""
Generate an image from a text prompt.
Args:
prompt: Text description of desired image
negative_prompt: What to avoid (empty string for none)
num_steps: Number of Euler steps (20-50 recommended)
guidance_scale: CFG scale (1.0=none, 3-7 typical)
height: Output height in pixels (divisible by 8)
width: Output width in pixels (divisible by 8)
seed: Random seed (None for random)
save_path: Path to save image (None to skip)
Returns:
PIL.Image
"""
print(f"\nGenerating: '{prompt}'")
print(f"Settings: {num_steps} steps, cfg={guidance_scale}, {width}x{height}, seed={seed}")
latents = euler_sample(
model=model,
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
seed=seed,
)
print("Decoding latents...")
image = decode_latents(latents)
if save_path:
image.save(save_path)
print(f"✓ Saved to {save_path}")
print("✓ Done!")
return image
# ============================================================================
# BATCH GENERATION
# ============================================================================
def generate_batch(
prompts: list,
negative_prompt: str = "",
num_steps: int = NUM_STEPS,
guidance_scale: float = GUIDANCE_SCALE,
height: int = HEIGHT,
width: int = WIDTH,
seed: int = SEED,
output_dir: str = "./outputs",
):
"""Generate multiple images."""
os.makedirs(output_dir, exist_ok=True)
images = []
for i, prompt in enumerate(prompts):
img_seed = seed + i if seed is not None else None
image = generate(
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
seed=img_seed,
save_path=os.path.join(output_dir, f"{i:03d}.png"),
)
images.append(image)
return images
# ============================================================================
# COMPARISON FUNCTION (old vs new model)
# ============================================================================
def compare_with_without_expert(
prompt: str,
negative_prompt: str = "",
num_steps: int = 30,
guidance_scale: float = 5.0,
seed: int = 42,
save_prefix: str = "compare",
):
"""
Generate same prompt with expert_predictor enabled vs disabled.
Useful for A/B testing the effect of the distilled expert.
"""
# With expert
image_with = generate(
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
save_path=f"{save_prefix}_with_expert.png",
)
# Without expert (temporarily disable)
old_predictor = model.expert_predictor
model.expert_predictor = None
image_without = generate(
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
save_path=f"{save_prefix}_without_expert.png",
)
# Restore
model.expert_predictor = old_predictor
# Side by side
combined = Image.new('RGB', (image_with.width * 2, image_with.height))
combined.paste(image_without, (0, 0))
combined.paste(image_with, (image_with.width, 0))
combined.save(f"{save_prefix}_comparison.png")
print(f"\n✓ Comparison saved: {save_prefix}_comparison.png")
print(f" Left: without expert | Right: with expert")
return image_without, image_with, combined
# ============================================================================
# QUICK TEST
# ============================================================================
print("\n" + "="*60)
print("TinyFlux-Deep + ExpertPredictor Inference Ready!")
print("="*60)
print(f"Config: {config.hidden_size} hidden, {config.num_attention_heads} heads")
print(f" {config.num_double_layers} double, {config.num_single_layers} single layers")
print(f" ExpertPredictor: {config.use_expert_predictor} (dim={config.expert_dim})")
print(f"Total: {total_params:,} parameters")
# Example usage:
image = generate(
prompt="subject, animal, feline, lion, natural habitat",
negative_prompt="",
num_steps=50,
guidance_scale=5.0,
seed=4545,
width=512,
height=512,
)
image