File size: 17,525 Bytes
905499d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# ============================================================================
# TinyFlux-Deep Inference Cell - With ExpertPredictor
# ============================================================================
# Run the model cell before this one (defines TinyFluxDeep, TinyFluxDeepConfig)
# Loads from: AbstractPhil/tiny-flux-deep or local checkpoint
#
# The ExpertPredictor runs standalone at inference - no SD1.5-flow needed.
# It predicts timestep expertise from (time_emb, clip_pooled).
# ============================================================================

import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL
from PIL import Image
import numpy as np
import os

# ============================================================================
# CONFIG
# ============================================================================
DEVICE = "cuda"
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16

# Model loading
HF_REPO = "AbstractPhil/tiny-flux-deep"
# stable v3 step_316875
LOAD_FROM = "hub:step_346875"  # "hub", "hub:step_XXXXX", "hub:step_XXXXX_ema", "local:/path/to/weights.safetensors"

# Generation settings
NUM_STEPS = 50
GUIDANCE_SCALE = 5.0  # Note: this is now just for CFG, not the broken guidance_in
HEIGHT = 512
WIDTH = 512
SEED = None
SHIFT = 3.0

# Model architecture (must match training)
USE_EXPERT_PREDICTOR = True
EXPERT_DIM = 1280
EXPERT_HIDDEN_DIM = 512

# ============================================================================
# LOAD TEXT ENCODERS
# ============================================================================
print("Loading text encoders...")
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_enc = T5EncoderModel.from_pretrained("google/flan-t5-base", torch_dtype=DTYPE).to(DEVICE).eval()

clip_tok = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_enc = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=DTYPE).to(DEVICE).eval()

# ============================================================================
# LOAD VAE
# ============================================================================
print("Loading Flux VAE...")
vae = AutoencoderKL.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    subfolder="vae",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# ============================================================================
# LOAD TINYFLUX-DEEP MODEL
# ============================================================================
print(f"Loading TinyFlux-Deep from: {LOAD_FROM}")

# Config with ExpertPredictor (no guidance_embeds)
config = TinyFluxDeepConfig(
    use_expert_predictor=USE_EXPERT_PREDICTOR,
    expert_dim=EXPERT_DIM,
    expert_hidden_dim=EXPERT_HIDDEN_DIM,
    guidance_embeds=False,  # Replaced by expert_predictor
)
model = TinyFluxDeep(config).to(DEVICE).to(DTYPE)

# Keys to handle during loading
DEPRECATED_KEYS = {
    'time_in.sin_basis',
    'guidance_in.sin_basis',
    'guidance_in.mlp.0.weight',
    'guidance_in.mlp.0.bias',
    'guidance_in.mlp.2.weight',
    'guidance_in.mlp.2.bias',
}


def load_weights(path):
    """Load weights from .safetensors or .pt file."""
    if path.endswith(".safetensors"):
        state_dict = load_file(path)
    elif path.endswith(".pt"):
        ckpt = torch.load(path, map_location=DEVICE, weights_only=False)
        if isinstance(ckpt, dict):
            if "model" in ckpt:
                state_dict = ckpt["model"]
            elif "state_dict" in ckpt:
                state_dict = ckpt["state_dict"]
            else:
                state_dict = ckpt
        else:
            state_dict = ckpt
    else:
        try:
            state_dict = load_file(path)
        except:
            state_dict = torch.load(path, map_location=DEVICE, weights_only=False)

    # Strip "_orig_mod." prefix from keys (added by torch.compile)
    if any(k.startswith("_orig_mod.") for k in state_dict.keys()):
        print("  Stripping torch.compile prefix...")
        state_dict = {k.replace("_orig_mod.", ""): v for k, v in state_dict.items()}

    return state_dict


def load_model_weights(model, weights, source_name):
    """Load weights with architecture upgrade support."""
    model_state = model.state_dict()

    loaded = []
    skipped_deprecated = []
    skipped_shape = []
    missing_new = []

    # Load matching weights
    for k, v in weights.items():
        if k in DEPRECATED_KEYS or k.startswith('guidance_in.'):
            skipped_deprecated.append(k)
        elif k in model_state:
            if v.shape == model_state[k].shape:
                model_state[k] = v
                loaded.append(k)
            else:
                skipped_shape.append((k, v.shape, model_state[k].shape))
        else:
            # Key not in model (maybe old architecture)
            skipped_deprecated.append(k)

    # Find new keys not in checkpoint
    for k in model_state:
        if k not in weights and not any(k.startswith(d.split('.')[0]) for d in DEPRECATED_KEYS if '.' in d):
            missing_new.append(k)

    # Apply loaded weights
    model.load_state_dict(model_state, strict=False)

    # Report
    print(f"  ✓ Loaded: {len(loaded)} weights")
    if skipped_deprecated:
        print(f"  ✓ Skipped deprecated: {len(skipped_deprecated)} (guidance_in, etc)")
    if skipped_shape:
        print(f"  âš  Shape mismatch: {len(skipped_shape)}")
        for k, old, new in skipped_shape[:3]:
            print(f"      {k}: {old} vs {new}")
    if missing_new:
        # Group by module
        modules = set(k.split('.')[0] for k in missing_new)
        print(f"  ℹ New modules (fresh init): {modules}")

    print(f"✓ Loaded from {source_name}")


if LOAD_FROM == "hub":
    try:
        weights_path = hf_hub_download(repo_id=HF_REPO, filename="model.safetensors")
    except:
        weights_path = hf_hub_download(repo_id=HF_REPO, filename="model.pt")
    weights = load_weights(weights_path)
    load_model_weights(model, weights, HF_REPO)

elif LOAD_FROM.startswith("hub:"):
    ckpt_name = LOAD_FROM[4:]
    for ext in [".safetensors", ".pt", ""]:
        try:
            if ckpt_name.endswith((".safetensors", ".pt")):
                filename = ckpt_name if "/" in ckpt_name else f"checkpoints/{ckpt_name}"
            else:
                filename = f"checkpoints/{ckpt_name}{ext}"
            weights_path = hf_hub_download(repo_id=HF_REPO, filename=filename)
            weights = load_weights(weights_path)
            load_model_weights(model, weights, f"{HF_REPO}/{filename}")
            break
        except Exception as e:
            continue
    else:
        raise ValueError(f"Could not find checkpoint: {ckpt_name}")

elif LOAD_FROM.startswith("local:"):
    weights_path = LOAD_FROM[6:]
    weights = load_weights(weights_path)
    load_model_weights(model, weights, weights_path)

else:
    raise ValueError(f"Unknown LOAD_FROM: {LOAD_FROM}")

model.eval()

# Count parameters
total_params = sum(p.numel() for p in model.parameters())
expert_params = sum(p.numel() for p in model.expert_predictor.parameters()) if model.expert_predictor else 0
print(f"Model params: {total_params:,} (expert_predictor: {expert_params:,})")

# ============================================================================
# ENCODING FUNCTIONS
# ============================================================================
@torch.inference_mode()
def encode_prompt(prompt: str, max_length: int = 128):
    """Encode prompt with flan-t5-base and CLIP-L."""
    t5_in = t5_tok(
        prompt,
        max_length=max_length,
        padding="max_length",
        truncation=True,
        return_tensors="pt"
    ).to(DEVICE)
    t5_out = t5_enc(
        input_ids=t5_in.input_ids,
        attention_mask=t5_in.attention_mask
    ).last_hidden_state

    clip_in = clip_tok(
        prompt,
        max_length=77,
        padding="max_length",
        truncation=True,
        return_tensors="pt"
    ).to(DEVICE)
    clip_out = clip_enc(
        input_ids=clip_in.input_ids,
        attention_mask=clip_in.attention_mask
    )
    clip_pooled = clip_out.pooler_output

    return t5_out.to(DTYPE), clip_pooled.to(DTYPE)


# ============================================================================
# FLOW MATCHING HELPERS
# ============================================================================
def flux_shift(t, s=SHIFT):
    """Flux timestep shift - biases towards higher t (closer to data)."""
    return s * t / (1 + (s - 1) * t)


# ============================================================================
# EULER DISCRETE FLOW MATCHING SAMPLER
# ============================================================================
@torch.inference_mode()
def euler_sample(
    model,
    prompt: str,
    negative_prompt: str = "",
    num_steps: int = 28,
    guidance_scale: float = 3.5,
    height: int = 512,
    width: int = 512,
    seed: int = None,
):
    """
    Euler discrete sampler for rectified flow matching.

    Flow Matching formulation:
        x_t = (1 - t) * noise + t * data
        At t=0: noise, At t=1: data
        Velocity v = data - noise (constant)

    Sampling: Integrate from t=0 (noise) to t=1 (data)

    With ExpertPredictor:
        - No guidance embedding needed
        - Expert predictor runs internally from (time_emb, clip_pooled)
        - CFG still works via positive/negative prompt difference
    """
    if seed is not None:
        torch.manual_seed(seed)
        generator = torch.Generator(device=DEVICE).manual_seed(seed)
    else:
        generator = None

    H_lat = height // 8
    W_lat = width // 8
    C_lat = 16

    # Encode prompts
    t5_cond, clip_cond = encode_prompt(prompt)
    if guidance_scale > 1.0 and negative_prompt is not None:
        t5_uncond, clip_uncond = encode_prompt(negative_prompt)
    else:
        t5_uncond, clip_uncond = None, None

    # Start from pure noise (t=0)
    x = torch.randn(1, H_lat * W_lat, C_lat, device=DEVICE, dtype=DTYPE, generator=generator)

    # Create image position IDs
    img_ids = TinyFluxDeep.create_img_ids(1, H_lat, W_lat, DEVICE)

    # Timesteps: 0 → 1 with flux shift
    t_linear = torch.linspace(0, 1, num_steps + 1, device=DEVICE, dtype=DTYPE)
    timesteps = flux_shift(t_linear, s=SHIFT)

    print(f"Sampling with {num_steps} Euler steps (t: 0→1, shifted)...")

    for i in range(num_steps):
        t_curr = timesteps[i]
        t_next = timesteps[i + 1]
        dt = t_next - t_curr

        t_batch = t_curr.unsqueeze(0)

        # Predict velocity (no guidance embedding, expert_predictor runs internally)
        v_cond = model(
            hidden_states=x,
            encoder_hidden_states=t5_cond,
            pooled_projections=clip_cond,
            timestep=t_batch,
            img_ids=img_ids,
            # No guidance parameter - ExpertPredictor handles timestep awareness
            # No expert_features - predictor runs standalone at inference
        )

        # Classifier-free guidance (true CFG via prompt difference)
        if guidance_scale > 1.0 and t5_uncond is not None:
            v_uncond = model(
                hidden_states=x,
                encoder_hidden_states=t5_uncond,
                pooled_projections=clip_uncond,
                timestep=t_batch,
                img_ids=img_ids,
            )
            v = v_uncond + guidance_scale * (v_cond - v_uncond)
        else:
            v = v_cond

        # Euler step: x_{t+dt} = x_t + v * dt
        x = x + v * dt

        if (i + 1) % max(1, num_steps // 5) == 0 or i == num_steps - 1:
            print(f"  Step {i+1}/{num_steps}, t={t_next.item():.3f}")

    # Reshape: (1, H*W, C) -> (1, C, H, W)
    latents = x.reshape(1, H_lat, W_lat, C_lat).permute(0, 3, 1, 2)

    return latents


# ============================================================================
# DECODE LATENTS TO IMAGE
# ============================================================================
@torch.inference_mode()
def decode_latents(latents):
    """Decode VAE latents to PIL Image."""
    latents = latents / vae.config.scaling_factor
    image = vae.decode(latents.to(vae.dtype)).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image[0].float().permute(1, 2, 0).cpu().numpy()
    image = (image * 255).astype(np.uint8)
    return Image.fromarray(image)


# ============================================================================
# MAIN GENERATION FUNCTION
# ============================================================================
def generate(
    prompt: str,
    negative_prompt: str = "",
    num_steps: int = NUM_STEPS,
    guidance_scale: float = GUIDANCE_SCALE,
    height: int = HEIGHT,
    width: int = WIDTH,
    seed: int = SEED,
    save_path: str = None,
):
    """
    Generate an image from a text prompt.

    Args:
        prompt: Text description of desired image
        negative_prompt: What to avoid (empty string for none)
        num_steps: Number of Euler steps (20-50 recommended)
        guidance_scale: CFG scale (1.0=none, 3-7 typical)
        height: Output height in pixels (divisible by 8)
        width: Output width in pixels (divisible by 8)
        seed: Random seed (None for random)
        save_path: Path to save image (None to skip)

    Returns:
        PIL.Image
    """
    print(f"\nGenerating: '{prompt}'")
    print(f"Settings: {num_steps} steps, cfg={guidance_scale}, {width}x{height}, seed={seed}")

    latents = euler_sample(
        model=model,
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_steps=num_steps,
        guidance_scale=guidance_scale,
        height=height,
        width=width,
        seed=seed,
    )

    print("Decoding latents...")
    image = decode_latents(latents)

    if save_path:
        image.save(save_path)
        print(f"✓ Saved to {save_path}")

    print("✓ Done!")
    return image


# ============================================================================
# BATCH GENERATION
# ============================================================================
def generate_batch(
    prompts: list,
    negative_prompt: str = "",
    num_steps: int = NUM_STEPS,
    guidance_scale: float = GUIDANCE_SCALE,
    height: int = HEIGHT,
    width: int = WIDTH,
    seed: int = SEED,
    output_dir: str = "./outputs",
):
    """Generate multiple images."""
    os.makedirs(output_dir, exist_ok=True)
    images = []

    for i, prompt in enumerate(prompts):
        img_seed = seed + i if seed is not None else None
        image = generate(
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            seed=img_seed,
            save_path=os.path.join(output_dir, f"{i:03d}.png"),
        )
        images.append(image)

    return images


# ============================================================================
# COMPARISON FUNCTION (old vs new model)
# ============================================================================
def compare_with_without_expert(
    prompt: str,
    negative_prompt: str = "",
    num_steps: int = 30,
    guidance_scale: float = 5.0,
    seed: int = 42,
    save_prefix: str = "compare",
):
    """
    Generate same prompt with expert_predictor enabled vs disabled.
    Useful for A/B testing the effect of the distilled expert.
    """
    # With expert
    image_with = generate(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_steps=num_steps,
        guidance_scale=guidance_scale,
        seed=seed,
        save_path=f"{save_prefix}_with_expert.png",
    )

    # Without expert (temporarily disable)
    old_predictor = model.expert_predictor
    model.expert_predictor = None

    image_without = generate(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_steps=num_steps,
        guidance_scale=guidance_scale,
        seed=seed,
        save_path=f"{save_prefix}_without_expert.png",
    )

    # Restore
    model.expert_predictor = old_predictor

    # Side by side
    combined = Image.new('RGB', (image_with.width * 2, image_with.height))
    combined.paste(image_without, (0, 0))
    combined.paste(image_with, (image_with.width, 0))
    combined.save(f"{save_prefix}_comparison.png")

    print(f"\n✓ Comparison saved: {save_prefix}_comparison.png")
    print(f"  Left: without expert | Right: with expert")

    return image_without, image_with, combined


# ============================================================================
# QUICK TEST
# ============================================================================
print("\n" + "="*60)
print("TinyFlux-Deep + ExpertPredictor Inference Ready!")
print("="*60)
print(f"Config: {config.hidden_size} hidden, {config.num_attention_heads} heads")
print(f"        {config.num_double_layers} double, {config.num_single_layers} single layers")
print(f"        ExpertPredictor: {config.use_expert_predictor} (dim={config.expert_dim})")
print(f"Total:  {total_params:,} parameters")

# Example usage:
image = generate(
    prompt="subject, animal, feline, lion, natural habitat",
    negative_prompt="",
    num_steps=50,
    guidance_scale=5.0,
    seed=4545,
    width=512,
    height=512,
)
image