YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
LiteCNNPro Model - Pure C++ Inference
Ultra-lightweight CNN model for dog breed classification
Model Details
- Model: LiteCNNPro (Pure C++ implementation)
- Parameters: 600K
- Classes: 120 (Stanford Dogs dataset)
- Input: 224Γ224 RGB images
- Framework: PyTorch (training) β Pure C++ (inference)
- Memory: 26MB total (4MB weights + 22MB runtime)
Architecture
Stem: Conv2D(3β32) + BatchNorm + ReLU6
Features: 7Γ Depthwise Separable Conv blocks
- Block 0: 32β64 (stride 2)
- Block 1: 64β128 (stride 2)
- Block 2-3: 128β256 (stride 2)
- Block 4-6: 256β512
- SE (Squeeze-Excitation) attention in each block
Classifier: AdaptiveAvgPool β FC(512β256) β FC(256β120)
Usage
Download Model
wget https://huggingface.co/2c6829/litecnn-pure-cpp/resolve/main/model_weights.bin
wget https://huggingface.co/2c6829/litecnn-pure-cpp/resolve/main/breed_classes.json
Build and Run
# Clone the inference server
git clone https://github.com/stupidcoderJung/litecnn-pure-cpp
cd litecnn-pure-cpp
# Place model files
mv model_weights.bin weights/
mv breed_classes.json .
# Build
mkdir -p build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j4
# Run server
./litecnn_server --port 8080
API Example
# Health check
curl http://localhost:8080/health
# Predict
curl -X POST http://localhost:8080/predict \
-F "image=@dog.jpg"
Response:
{
"predictions": [
{
"class_id": 81,
"score": 0.95,
"breed_en": "Border collie",
"breed_ko": "보λ μ½λ¦¬"
}
]
}
Performance
| Metric | Value |
|---|---|
| Memory (RSS) | 26 MB |
| Binary Size | 803 KB |
| Weights Size | 4.0 MB |
| Inference Time | <100ms (CPU) |
Comparison:
- PyTorch: 322 MB β 92% reduction β
- LibTorch: 130 MB β 80% reduction β
- ONNX Runtime: 102 MB β 75% reduction β
Files
model_weights.bin(4.0 MB) - Model weights in binary formatbreed_classes.json(7.4 KB) - 120 dog breeds (English + Korean)extract_weights.py- PyTorch checkpoint β binary converter
Training
The model was trained on the Stanford Dogs dataset with:
- Optimizer: AdamW
- Learning rate: 1e-3
- Augmentation: Random flip, rotation, color jitter
- Epochs: 50
- Best validation accuracy: ~85%
License
MIT License
Citation
@software{litecnn_pure_cpp_2026,
author = {LiteCNN Team},
title = {LiteCNN Pure C++ Inference Server},
year = {2026},
url = {https://github.com/stupidcoderJung/litecnn-pure-cpp}
}
Contact
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support