Upload app (13)-w1-full working.py
Browse files- app (13)-w1-full working.py +135 -0
app (13)-w1-full working.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
# Disable PyplotGlobalUseWarning
|
| 8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 9 |
+
|
| 10 |
+
# Create an image classification pipeline with scores
|
| 11 |
+
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
|
| 12 |
+
|
| 13 |
+
# Streamlit app
|
| 14 |
+
st.title("Emotion Recognition with vit-face-expression")
|
| 15 |
+
|
| 16 |
+
# Upload images
|
| 17 |
+
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
|
| 18 |
+
|
| 19 |
+
# Store selected file names
|
| 20 |
+
selected_file_names = []
|
| 21 |
+
|
| 22 |
+
# Display thumbnail images alongside file names and sizes in the sidebar
|
| 23 |
+
selected_images = []
|
| 24 |
+
if uploaded_images:
|
| 25 |
+
|
| 26 |
+
# Add a "Select All" checkbox in the sidebar
|
| 27 |
+
select_all = st.sidebar.checkbox("Select All", False)
|
| 28 |
+
|
| 29 |
+
for idx, img in enumerate(uploaded_images):
|
| 30 |
+
image = Image.open(img)
|
| 31 |
+
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
|
| 32 |
+
# Display thumbnail image and checkbox in sidebar
|
| 33 |
+
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
|
| 34 |
+
#selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key)
|
| 35 |
+
# If "Select All" is checked, all individual checkboxes are selected
|
| 36 |
+
selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
if selected:
|
| 40 |
+
selected_images.append(image)
|
| 41 |
+
selected_file_names.append(img.name)
|
| 42 |
+
|
| 43 |
+
if st.button("Predict Emotions") and selected_images:
|
| 44 |
+
emotions = []
|
| 45 |
+
if len(selected_images) == 2:
|
| 46 |
+
# Predict emotion for each selected image using the pipeline
|
| 47 |
+
results = [pipe(image) for image in selected_images]
|
| 48 |
+
|
| 49 |
+
# Display images and predicted emotions side by side
|
| 50 |
+
col1, col2 = st.columns(2)
|
| 51 |
+
for i in range(2):
|
| 52 |
+
predicted_class = results[i][0]["label"]
|
| 53 |
+
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
| 54 |
+
emotions.append(predicted_emotion)
|
| 55 |
+
col = col1 if i == 0 else col2
|
| 56 |
+
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
| 57 |
+
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
|
| 58 |
+
# Use the index to get the corresponding filename
|
| 59 |
+
col.write(f"Original File Name: {selected_file_names[i]}")
|
| 60 |
+
|
| 61 |
+
# Display the keys and values of all results
|
| 62 |
+
st.write("Keys and Values of all results:")
|
| 63 |
+
col1, col2 = st.columns(2)
|
| 64 |
+
for i, result in enumerate(results):
|
| 65 |
+
col = col1 if i == 0 else col2
|
| 66 |
+
col.write(f"Keys and Values of results[{i}]:")
|
| 67 |
+
for res in result:
|
| 68 |
+
label = res["label"]
|
| 69 |
+
score = res["score"]
|
| 70 |
+
col.write(f"{label}: {score:.4f}")
|
| 71 |
+
else:
|
| 72 |
+
# Predict emotion for each selected image using the pipeline
|
| 73 |
+
results = [pipe(image) for image in selected_images]
|
| 74 |
+
|
| 75 |
+
# Display images and predicted emotions
|
| 76 |
+
for i, (image, result) in enumerate(zip(selected_images, results)):
|
| 77 |
+
predicted_class = result[0]["label"]
|
| 78 |
+
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
| 79 |
+
emotions.append(predicted_emotion)
|
| 80 |
+
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
| 81 |
+
st.write(f"Emotion Scores for #{i+1} Image")
|
| 82 |
+
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
|
| 83 |
+
# Use the index to get the corresponding filename
|
| 84 |
+
st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}")
|
| 85 |
+
|
| 86 |
+
# Calculate emotion statistics
|
| 87 |
+
emotion_counts = pd.Series(emotions).value_counts()
|
| 88 |
+
|
| 89 |
+
# Define a color map that matches the emotions to specific colors
|
| 90 |
+
color_map = {
|
| 91 |
+
'Neutral': '#B38B6D', # Taupe
|
| 92 |
+
'Happy': '#FFFF00', # Yellow
|
| 93 |
+
'Sad': '#0000FF', # Blue
|
| 94 |
+
'Angry': '#FF0000', # Red
|
| 95 |
+
'Disgust': '#008000', # Green
|
| 96 |
+
'Surprise': '#FFA500', # Orange (Bright)
|
| 97 |
+
'Fear': '#000000' # Black
|
| 98 |
+
# Add more emotions and their corresponding colors here
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
# Calculate the total number of faces analyzed
|
| 102 |
+
total_faces = len(selected_images)
|
| 103 |
+
|
| 104 |
+
# Use the color map to assign colors to the pie chart
|
| 105 |
+
pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
|
| 106 |
+
|
| 107 |
+
# Plot pie chart with total faces in the title
|
| 108 |
+
st.write("Emotion Distribution (Pie Chart):")
|
| 109 |
+
fig_pie, ax_pie = plt.subplots()
|
| 110 |
+
#font color
|
| 111 |
+
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors, textprops={'color': 'white', 'weight': 'bold'})
|
| 112 |
+
|
| 113 |
+
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors)
|
| 114 |
+
ax_pie.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
|
| 115 |
+
# Add total faces to the title
|
| 116 |
+
ax_pie.set_title(f"Total Faces Analyzed: {total_faces}")
|
| 117 |
+
st.pyplot(fig_pie)
|
| 118 |
+
|
| 119 |
+
# Use the same color map for the bar chart
|
| 120 |
+
bar_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
|
| 121 |
+
|
| 122 |
+
# Plot bar chart with total faces in the title
|
| 123 |
+
st.write("Emotion Distribution (Bar Chart):")
|
| 124 |
+
fig_bar, ax_bar = plt.subplots()
|
| 125 |
+
emotion_counts.plot(kind='bar', color=bar_colors, ax=ax_bar)
|
| 126 |
+
ax_bar.set_xlabel('Emotion')
|
| 127 |
+
ax_bar.set_ylabel('Count')
|
| 128 |
+
# Add total faces to the title
|
| 129 |
+
ax_bar.set_title(f"Emotion Distribution - Total Faces Analyzed: {total_faces}")
|
| 130 |
+
ax_bar.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Ensure integer ticks on Y-axis
|
| 131 |
+
# Display bar values as integers
|
| 132 |
+
for i in ax_bar.patches:
|
| 133 |
+
ax_bar.text(i.get_x() + i.get_width() / 2, i.get_height() + 0.1, int(i.get_height()), ha='center', va='bottom')
|
| 134 |
+
|
| 135 |
+
st.pyplot(fig_bar)
|