Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import warnings
|
| 2 |
warnings.filterwarnings("ignore")
|
| 3 |
|
|
@@ -6,54 +8,47 @@ import gradio as gr
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from peft import PeftModel
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct"
|
| 11 |
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 12 |
|
| 13 |
MAX_NEW_TOKENS = 180
|
| 14 |
|
| 15 |
-
model
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
#
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
print("π Loading model (first request only)...")
|
| 28 |
-
|
| 29 |
-
base = AutoModelForCausalLM.from_pretrained(
|
| 30 |
-
BASE_MODEL,
|
| 31 |
-
device_map="cpu",
|
| 32 |
-
torch_dtype=torch.float16, # lighter
|
| 33 |
-
low_cpu_mem_usage=True,
|
| 34 |
-
trust_remote_code=True,
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
base = PeftModel.from_pretrained(base, LORA_PATH)
|
| 38 |
-
|
| 39 |
-
print("Merging LoRA...")
|
| 40 |
-
model_loaded = base.merge_and_unload()
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
tokenizer = tokenizer_loaded
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
-
#
|
|
|
|
|
|
|
| 52 |
def generate_sql(question):
|
| 53 |
-
if not question
|
| 54 |
-
return "Enter a question"
|
| 55 |
-
|
| 56 |
-
load_model()
|
| 57 |
|
| 58 |
messages = [{"role": "user", "content": question}]
|
| 59 |
|
|
@@ -64,33 +59,33 @@ def generate_sql(question):
|
|
| 64 |
return_tensors="pt",
|
| 65 |
)
|
| 66 |
|
| 67 |
-
with torch.
|
| 68 |
-
|
| 69 |
-
input_ids
|
| 70 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 71 |
-
temperature=0
|
| 72 |
do_sample=False,
|
| 73 |
pad_token_id=tokenizer.eos_token_id,
|
| 74 |
)
|
| 75 |
|
| 76 |
-
|
| 77 |
|
|
|
|
| 78 |
for t in ["<|assistant|>", "<|user|>", "<|end|>"]:
|
| 79 |
-
|
| 80 |
-
response = response.split(t)[-1]
|
| 81 |
|
| 82 |
-
return
|
| 83 |
|
| 84 |
-
#
|
|
|
|
|
|
|
| 85 |
demo = gr.Interface(
|
| 86 |
fn=generate_sql,
|
| 87 |
inputs=gr.Textbox(lines=3, label="SQL Question"),
|
| 88 |
-
outputs=gr.Textbox(lines=8, label="SQL"),
|
| 89 |
-
title="SQL Chat Phi-3
|
| 90 |
-
description="First
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
-
demo.
|
| 94 |
-
|
| 95 |
-
if __name__ == "__main__":
|
| 96 |
-
demo.launch(server_name="0.0.0.0", show_error=True)
|
|
|
|
| 1 |
+
# CPU SAFE HuggingFace Space (2026 stable)
|
| 2 |
+
|
| 3 |
import warnings
|
| 4 |
warnings.filterwarnings("ignore")
|
| 5 |
|
|
|
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
from peft import PeftModel
|
| 10 |
|
| 11 |
+
# reduce CPU overload on free tier
|
| 12 |
+
torch.set_num_threads(1)
|
| 13 |
+
|
| 14 |
+
# βββββββββββββββββββββββββ
|
| 15 |
+
# Config
|
| 16 |
+
# βββββββββββββββββββββββββ
|
| 17 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct"
|
| 18 |
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 19 |
|
| 20 |
MAX_NEW_TOKENS = 180
|
| 21 |
|
| 22 |
+
print("Loading model...")
|
| 23 |
+
|
| 24 |
+
# βββββββββββββββββββββββββ
|
| 25 |
+
# Load base model
|
| 26 |
+
# βββββββββββββββββββββββββ
|
| 27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
BASE_MODEL,
|
| 29 |
+
device_map="cpu",
|
| 30 |
+
torch_dtype=torch.float32,
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
low_cpu_mem_usage=True,
|
| 33 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
print("Loading LoRA...")
|
| 36 |
+
model = PeftModel.from_pretrained(model, LORA_PATH)
|
| 37 |
|
| 38 |
+
print("Merging LoRA...")
|
| 39 |
+
model = model.merge_and_unload()
|
| 40 |
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
|
|
|
| 42 |
|
| 43 |
+
model.eval()
|
| 44 |
+
print("Model ready")
|
| 45 |
|
| 46 |
+
# βββββββββββββββββββββββββ
|
| 47 |
+
# Inference
|
| 48 |
+
# βββββββββββββββββββββββββ
|
| 49 |
def generate_sql(question):
|
| 50 |
+
if not question:
|
| 51 |
+
return "Enter a SQL question."
|
|
|
|
|
|
|
| 52 |
|
| 53 |
messages = [{"role": "user", "content": question}]
|
| 54 |
|
|
|
|
| 59 |
return_tensors="pt",
|
| 60 |
)
|
| 61 |
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
output = model.generate(
|
| 64 |
+
input_ids,
|
| 65 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 66 |
+
temperature=0,
|
| 67 |
do_sample=False,
|
| 68 |
pad_token_id=tokenizer.eos_token_id,
|
| 69 |
)
|
| 70 |
|
| 71 |
+
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 72 |
|
| 73 |
+
# clean artifacts
|
| 74 |
for t in ["<|assistant|>", "<|user|>", "<|end|>"]:
|
| 75 |
+
text = text.replace(t, "")
|
|
|
|
| 76 |
|
| 77 |
+
return text.strip()
|
| 78 |
|
| 79 |
+
# βββββββββββββββββββββββββ
|
| 80 |
+
# UI
|
| 81 |
+
# βββββββββββββββββββββββββ
|
| 82 |
demo = gr.Interface(
|
| 83 |
fn=generate_sql,
|
| 84 |
inputs=gr.Textbox(lines=3, label="SQL Question"),
|
| 85 |
+
outputs=gr.Textbox(lines=8, label="Generated SQL"),
|
| 86 |
+
title="SQL Chat β Phi-3 mini",
|
| 87 |
+
description="Free CPU Space. First response may take ~90s",
|
| 88 |
+
cache_examples=False,
|
| 89 |
)
|
| 90 |
|
| 91 |
+
demo.launch()
|
|
|
|
|
|
|
|
|