Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,102 +1,75 @@
|
|
| 1 |
-
# CPU SAFE HuggingFace Space (2026 stable)
|
| 2 |
-
|
| 3 |
import warnings
|
| 4 |
warnings.filterwarnings("ignore")
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
-
from peft import PeftModel
|
| 10 |
-
from transformers import AutoConfig
|
| 11 |
|
| 12 |
-
# reduce CPU overload on free tier
|
| 13 |
torch.set_num_threads(1)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
#
|
| 17 |
-
#
|
| 18 |
-
BASE_MODEL = "
|
| 19 |
-
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 20 |
-
|
| 21 |
-
MAX_NEW_TOKENS = 180
|
| 22 |
|
| 23 |
print("Loading model...")
|
| 24 |
|
| 25 |
-
# βββββββββββββββββββββββββ
|
| 26 |
-
# Load base model
|
| 27 |
-
# βββββββββββββββββββββββββ
|
| 28 |
-
|
| 29 |
-
# Load config
|
| 30 |
-
config = AutoConfig.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 31 |
-
|
| 32 |
-
# π΄ IMPORTANT FIX
|
| 33 |
-
# Replace quantization config with empty dict (NOT None)
|
| 34 |
-
config.quantization_config = {}
|
| 35 |
-
|
| 36 |
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
BASE_MODEL,
|
| 38 |
-
config=config,
|
| 39 |
device_map="cpu",
|
| 40 |
torch_dtype=torch.float32,
|
| 41 |
-
trust_remote_code=True,
|
| 42 |
low_cpu_mem_usage=True,
|
| 43 |
)
|
| 44 |
|
| 45 |
-
print("Loading LoRA...")
|
| 46 |
-
model = PeftModel.from_pretrained(model, LORA_PATH)
|
| 47 |
-
|
| 48 |
-
print("Merging LoRA...")
|
| 49 |
-
model = model.merge_and_unload()
|
| 50 |
-
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 52 |
|
| 53 |
model.eval()
|
| 54 |
print("Model ready")
|
| 55 |
|
| 56 |
-
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
# βββββββββββββββββββββββββ
|
| 60 |
def generate_sql(question):
|
| 61 |
-
if not question:
|
| 62 |
-
return "Enter
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
)
|
| 72 |
|
| 73 |
with torch.no_grad():
|
| 74 |
output = model.generate(
|
| 75 |
-
|
| 76 |
-
max_new_tokens=
|
| 77 |
-
temperature=0,
|
| 78 |
do_sample=False,
|
| 79 |
pad_token_id=tokenizer.eos_token_id,
|
| 80 |
)
|
| 81 |
|
| 82 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 83 |
|
| 84 |
-
|
| 85 |
-
for t in ["<|assistant|>", "<|user|>", "<|end|>"]:
|
| 86 |
-
text = text.replace(t, "")
|
| 87 |
-
|
| 88 |
-
return text.strip()
|
| 89 |
|
| 90 |
-
#
|
| 91 |
# UI
|
| 92 |
-
#
|
| 93 |
demo = gr.Interface(
|
| 94 |
fn=generate_sql,
|
| 95 |
inputs=gr.Textbox(lines=3, label="SQL Question"),
|
| 96 |
outputs=gr.Textbox(lines=8, label="Generated SQL"),
|
| 97 |
-
title="SQL
|
| 98 |
-
description="
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import warnings
|
| 2 |
warnings.filterwarnings("ignore")
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 7 |
|
|
|
|
| 8 |
torch.set_num_threads(1)
|
| 9 |
|
| 10 |
+
# βββββββββββββββββββββ
|
| 11 |
+
# MODEL
|
| 12 |
+
# βββββββββββββββββββββ
|
| 13 |
+
BASE_MODEL = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
print("Loading model...")
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
BASE_MODEL,
|
|
|
|
| 19 |
device_map="cpu",
|
| 20 |
torch_dtype=torch.float32,
|
|
|
|
| 21 |
low_cpu_mem_usage=True,
|
| 22 |
)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 25 |
|
| 26 |
model.eval()
|
| 27 |
print("Model ready")
|
| 28 |
|
| 29 |
+
# βββββββββββββββββββββ
|
| 30 |
+
# GENERATION
|
| 31 |
+
# βββββββββββββββββββββ
|
|
|
|
| 32 |
def generate_sql(question):
|
| 33 |
+
if not question.strip():
|
| 34 |
+
return "Enter SQL question."
|
| 35 |
|
| 36 |
+
prompt = f"""
|
| 37 |
+
You are a SQL expert.
|
| 38 |
+
Convert the user request into SQL query only.
|
| 39 |
|
| 40 |
+
User: {question}
|
| 41 |
+
SQL:
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
| 45 |
|
| 46 |
with torch.no_grad():
|
| 47 |
output = model.generate(
|
| 48 |
+
**inputs,
|
| 49 |
+
max_new_tokens=120,
|
| 50 |
+
temperature=0.2,
|
| 51 |
do_sample=False,
|
| 52 |
pad_token_id=tokenizer.eos_token_id,
|
| 53 |
)
|
| 54 |
|
| 55 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 56 |
|
| 57 |
+
return text.split("SQL:")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# βββββββββββββββββββββ
|
| 60 |
# UI
|
| 61 |
+
# βββββββββββββββββββββ
|
| 62 |
demo = gr.Interface(
|
| 63 |
fn=generate_sql,
|
| 64 |
inputs=gr.Textbox(lines=3, label="SQL Question"),
|
| 65 |
outputs=gr.Textbox(lines=8, label="Generated SQL"),
|
| 66 |
+
title="SQL Generator (Portfolio Demo)",
|
| 67 |
+
description="Fast CPU model for portfolio demo.",
|
| 68 |
+
examples=[
|
| 69 |
+
["Find duplicate emails in users table"],
|
| 70 |
+
["Top 5 highest paid employees"],
|
| 71 |
+
["Orders per customer last month"],
|
| 72 |
+
],
|
| 73 |
)
|
| 74 |
|
| 75 |
+
demo.launch(server_name="0.0.0.0")
|