Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,23 @@
|
|
| 1 |
-
# app.py
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
-
import spaces
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 7 |
from peft import PeftModel
|
| 8 |
|
| 9 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 10 |
# Configuration
|
| 11 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 12 |
-
|
| 13 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"
|
| 14 |
-
LORA_PATH
|
| 15 |
|
| 16 |
MAX_NEW_TOKENS = 180
|
| 17 |
-
TEMPERATURE
|
| 18 |
-
DO_SAMPLE
|
| 19 |
|
| 20 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 21 |
-
# Load model safely on CPU
|
| 22 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 23 |
-
|
| 24 |
print("Loading base model on CPU...")
|
| 25 |
try:
|
| 26 |
bnb_config = BitsAndBytesConfig(
|
|
@@ -32,14 +29,14 @@ try:
|
|
| 32 |
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
BASE_MODEL,
|
| 34 |
quantization_config=bnb_config,
|
| 35 |
-
device_map="cpu",
|
| 36 |
trust_remote_code=True,
|
| 37 |
low_cpu_mem_usage=True
|
| 38 |
)
|
| 39 |
|
| 40 |
print("Loading and merging LoRA adapters...")
|
| 41 |
model = PeftModel.from_pretrained(model, LORA_PATH)
|
| 42 |
-
model = model.merge_and_unload()
|
| 43 |
|
| 44 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 45 |
model.eval()
|
|
@@ -50,26 +47,20 @@ except Exception as e:
|
|
| 50 |
raise
|
| 51 |
|
| 52 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 53 |
-
# Inference function β GPU
|
| 54 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 55 |
-
|
| 56 |
-
@spaces.GPU(duration=60) # 60 seconds is usually enough
|
| 57 |
def generate_sql(prompt: str):
|
| 58 |
try:
|
| 59 |
messages = [{"role": "user", "content": prompt.strip()}]
|
| 60 |
-
|
| 61 |
-
# Tokenize on CPU
|
| 62 |
inputs = tokenizer.apply_chat_template(
|
| 63 |
messages,
|
| 64 |
tokenize=True,
|
| 65 |
add_generation_prompt=True,
|
| 66 |
return_tensors="pt"
|
| 67 |
)
|
| 68 |
-
|
| 69 |
-
#
|
| 70 |
-
if torch.cuda.is_available():
|
| 71 |
-
inputs = inputs.to("cuda")
|
| 72 |
-
|
| 73 |
with torch.inference_mode():
|
| 74 |
outputs = model.generate(
|
| 75 |
input_ids=inputs,
|
|
@@ -81,7 +72,7 @@ def generate_sql(prompt: str):
|
|
| 81 |
)
|
| 82 |
|
| 83 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 84 |
-
|
| 85 |
# Clean output
|
| 86 |
if "<|assistant|>" in response:
|
| 87 |
response = response.split("<|assistant|>", 1)[-1].strip()
|
|
@@ -98,7 +89,6 @@ def generate_sql(prompt: str):
|
|
| 98 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 99 |
# Gradio Interface
|
| 100 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 101 |
-
|
| 102 |
demo = gr.Interface(
|
| 103 |
fn=generate_sql,
|
| 104 |
inputs=gr.Textbox(
|
|
@@ -111,10 +101,10 @@ demo = gr.Interface(
|
|
| 111 |
label="Generated SQL / Answer",
|
| 112 |
lines=6
|
| 113 |
),
|
| 114 |
-
title="SQL Chatbot β Phi-3-mini fine-tuned",
|
| 115 |
description=(
|
| 116 |
-
"
|
| 117 |
-
"
|
| 118 |
),
|
| 119 |
examples=[
|
| 120 |
["Find duplicate emails in users table"],
|
|
@@ -122,20 +112,16 @@ demo = gr.Interface(
|
|
| 122 |
["Count total orders per customer in last 30 days"],
|
| 123 |
["Delete duplicate rows based on email column"]
|
| 124 |
],
|
| 125 |
-
cache_examples=False, #
|
| 126 |
-
# allow_flagging="never" β REMOVE THIS LINE COMPLETELY
|
| 127 |
)
|
| 128 |
|
| 129 |
if __name__ == "__main__":
|
| 130 |
print("Starting Gradio server...")
|
| 131 |
-
import time
|
| 132 |
-
time.sleep(15) # Give extra time for model/Gradio to settle
|
| 133 |
-
|
| 134 |
demo.launch(
|
| 135 |
server_name="0.0.0.0",
|
| 136 |
server_port=7860,
|
| 137 |
debug=False,
|
| 138 |
quiet=False,
|
| 139 |
show_error=True,
|
| 140 |
-
prevent_thread_lock=True
|
| 141 |
)
|
|
|
|
| 1 |
+
# app.py - Fully CPU-safe version for free Hugging Face Spaces
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 6 |
from peft import PeftModel
|
| 7 |
|
| 8 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 9 |
# Configuration
|
| 10 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 11 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"
|
| 12 |
+
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 13 |
|
| 14 |
MAX_NEW_TOKENS = 180
|
| 15 |
+
TEMPERATURE = 0.0
|
| 16 |
+
DO_SAMPLE = False
|
| 17 |
|
| 18 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 19 |
+
# Load model safely on CPU
|
| 20 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 21 |
print("Loading base model on CPU...")
|
| 22 |
try:
|
| 23 |
bnb_config = BitsAndBytesConfig(
|
|
|
|
| 29 |
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
BASE_MODEL,
|
| 31 |
quantization_config=bnb_config,
|
| 32 |
+
device_map="cpu",
|
| 33 |
trust_remote_code=True,
|
| 34 |
low_cpu_mem_usage=True
|
| 35 |
)
|
| 36 |
|
| 37 |
print("Loading and merging LoRA adapters...")
|
| 38 |
model = PeftModel.from_pretrained(model, LORA_PATH)
|
| 39 |
+
model = model.merge_and_unload()
|
| 40 |
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 42 |
model.eval()
|
|
|
|
| 47 |
raise
|
| 48 |
|
| 49 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 50 |
+
# Inference function (CPU only β no @spaces.GPU)
|
| 51 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
| 52 |
def generate_sql(prompt: str):
|
| 53 |
try:
|
| 54 |
messages = [{"role": "user", "content": prompt.strip()}]
|
| 55 |
+
|
|
|
|
| 56 |
inputs = tokenizer.apply_chat_template(
|
| 57 |
messages,
|
| 58 |
tokenize=True,
|
| 59 |
add_generation_prompt=True,
|
| 60 |
return_tensors="pt"
|
| 61 |
)
|
| 62 |
+
|
| 63 |
+
# No .to("cuda") β stay on CPU
|
|
|
|
|
|
|
|
|
|
| 64 |
with torch.inference_mode():
|
| 65 |
outputs = model.generate(
|
| 66 |
input_ids=inputs,
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
# Clean output
|
| 77 |
if "<|assistant|>" in response:
|
| 78 |
response = response.split("<|assistant|>", 1)[-1].strip()
|
|
|
|
| 89 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 90 |
# Gradio Interface
|
| 91 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 92 |
demo = gr.Interface(
|
| 93 |
fn=generate_sql,
|
| 94 |
inputs=gr.Textbox(
|
|
|
|
| 101 |
label="Generated SQL / Answer",
|
| 102 |
lines=6
|
| 103 |
),
|
| 104 |
+
title="SQL Chatbot β Phi-3-mini fine-tuned (CPU)",
|
| 105 |
description=(
|
| 106 |
+
"Free CPU version β first response may take 60β180+ seconds.\n"
|
| 107 |
+
"Subsequent responses will be faster (model stays in memory)."
|
| 108 |
),
|
| 109 |
examples=[
|
| 110 |
["Find duplicate emails in users table"],
|
|
|
|
| 112 |
["Count total orders per customer in last 30 days"],
|
| 113 |
["Delete duplicate rows based on email column"]
|
| 114 |
],
|
| 115 |
+
cache_examples=False, # Very important on CPU
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
if __name__ == "__main__":
|
| 119 |
print("Starting Gradio server...")
|
|
|
|
|
|
|
|
|
|
| 120 |
demo.launch(
|
| 121 |
server_name="0.0.0.0",
|
| 122 |
server_port=7860,
|
| 123 |
debug=False,
|
| 124 |
quiet=False,
|
| 125 |
show_error=True,
|
| 126 |
+
prevent_thread_lock=True
|
| 127 |
)
|