pavankumarhm's picture
Add application file
73c2742
import gradio as gr
import numpy as np
from tensorflow.keras.preprocessing.text import text_to_word_sequence
from tensorflow.keras.preprocessing.sequence import pad_sequences
from gensim.models import KeyedVectors
from tensorflow.keras.models import load_model
import gensim.downloader as api
# Load the pre-trained Word2Vec model
word2vec_transfer = api.load("glove-wiki-gigaword-100")
# Define the function to embed a sentence with the pre-trained Word2Vec model
def embed_sentence_with_TF(word2vec, sentence):
embedded_sentence = []
for word in sentence:
if word in word2vec:
embedded_sentence.append(word2vec[word])
return np.array(embedded_sentence)
# Define the function to preprocess a new movie review
def preprocess_review(review):
# Tokenize the review
review = text_to_word_sequence(review)
# Embed the review with the pre-trained Word2Vec model
review_embedded = embed_sentence_with_TF(word2vec_transfer, review)
# Pad the embedded review
review_padded = pad_sequences([review_embedded], dtype='float32', padding='post', maxlen=200)
return review_padded
# Load the trained model
model = load_model('my_model.h5')
def predict_sentiment(review):
# Preprocess the review
review_padded = preprocess_review(review)
# Predict the sentiment
sentiment = model.predict(review_padded)[0][0]
if sentiment > 0.5:
return "Positive"
elif sentiment == 0.5:
return "Neutral"
else:
return "Negative"
# Create a Gradio interface
inputs = gr.inputs.Textbox(lines=5, label="Input Text")
outputs = gr.outputs.Textbox(label="Sentiment")
title = "Sentiment Analysis"
description = "Enter a text and get the sentiment prediction."
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs, title=title, description=description).launch(share=True)