Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import os | |
| # Imposta la directory di cache locale | |
| os.environ["TRANSFORMERS_CACHE"] = "./hf_cache" | |
| # Titolo dell'app | |
| st.title("π€ Chatbot DeepSeek con Transformers + Streamlit") | |
| # Carica modello e tokenizer | |
| def load_model(): | |
| model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| # Inizializza la sessione | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [] | |
| # Input utente | |
| user_input = st.text_input("Scrivi il tuo messaggio:") | |
| # Generazione risposta | |
| if user_input: | |
| st.session_state.chat_history.append(("π§", user_input)) | |
| inputs = tokenizer(user_input, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| st.session_state.chat_history.append(("π€", response)) | |
| # Mostra la conversazione | |
| for speaker, msg in st.session_state.chat_history: | |
| st.markdown(f"**{speaker}**: {msg}") | |