|
|
import streamlit as st |
|
|
from PIL import Image, ImageColor, ImageDraw, ImageFont, PngImagePlugin |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torchvision import transforms |
|
|
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, Swin2SRForImageSuperResolution, VitMatteForImageMatting |
|
|
import io |
|
|
import numpy as np |
|
|
import gc |
|
|
|
|
|
|
|
|
st.set_page_config(layout="wide", page_title="AI Image Lab Pro") |
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
|
def load_rmbg_model(): |
|
|
model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4", trust_remote_code=True) |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model.to(device) |
|
|
return model, device |
|
|
|
|
|
@st.cache_resource |
|
|
def load_birefnet_model(): |
|
|
model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True) |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model.to(device) |
|
|
return model, device |
|
|
|
|
|
@st.cache_resource |
|
|
def load_vitmatte_model(): |
|
|
processor = AutoImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k") |
|
|
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k") |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model.to(device) |
|
|
return processor, model, device |
|
|
|
|
|
@st.cache_resource |
|
|
def load_upscaler(scale=2): |
|
|
if scale == 4: |
|
|
model_id = "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" |
|
|
else: |
|
|
model_id = "caidas/swin2SR-classical-sr-x2-64" |
|
|
processor = AutoImageProcessor.from_pretrained(model_id) |
|
|
model = Swin2SRForImageSuperResolution.from_pretrained(model_id) |
|
|
return processor, model |
|
|
|
|
|
|
|
|
|
|
|
def cleanup_memory(): |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def find_mask_tensor(output): |
|
|
if isinstance(output, torch.Tensor): |
|
|
if output.dim() == 4 and output.shape[1] == 1: return output |
|
|
elif output.dim() == 3 and output.shape[0] == 1: return output |
|
|
return None |
|
|
if hasattr(output, "logits"): return find_mask_tensor(output.logits) |
|
|
elif isinstance(output, (list, tuple)): |
|
|
for item in output: |
|
|
found = find_mask_tensor(item) |
|
|
if found is not None: return found |
|
|
return None |
|
|
|
|
|
def generate_trimap(mask_tensor, erode_kernel_size=10, dilate_kernel_size=10): |
|
|
if mask_tensor.dim() == 3: mask_tensor = mask_tensor.unsqueeze(0) |
|
|
erode_k = erode_kernel_size |
|
|
dilate_k = dilate_kernel_size |
|
|
dilated = F.max_pool2d(mask_tensor, kernel_size=dilate_k, stride=1, padding=dilate_k//2) |
|
|
eroded = -F.max_pool2d(-mask_tensor, kernel_size=erode_k, stride=1, padding=erode_k//2) |
|
|
trimap = torch.full_like(mask_tensor, 0.5) |
|
|
trimap[eroded > 0.5] = 1.0 |
|
|
trimap[dilated < 0.5] = 0.0 |
|
|
return trimap |
|
|
|
|
|
|
|
|
|
|
|
def inference_segmentation(model, image, device, resolution=1024): |
|
|
w, h = image.size |
|
|
transform = transforms.Compose([ |
|
|
transforms.Resize((resolution, resolution)), |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
|
]) |
|
|
input_tensor = transform(image).unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(input_tensor) |
|
|
|
|
|
result_tensor = find_mask_tensor(outputs) |
|
|
if result_tensor is None: result_tensor = outputs[0] if isinstance(outputs, (list, tuple)) else outputs |
|
|
if not isinstance(result_tensor, torch.Tensor): |
|
|
if isinstance(result_tensor, (list, tuple)): result_tensor = result_tensor[0] |
|
|
|
|
|
pred = result_tensor.squeeze().cpu() |
|
|
if pred.max() > 1 or pred.min() < 0: pred = pred.sigmoid() |
|
|
|
|
|
pred_pil = transforms.ToPILImage()(pred) |
|
|
mask = pred_pil.resize((w, h), resample=Image.LANCZOS) |
|
|
return mask |
|
|
|
|
|
def inference_vitmatte(image, device): |
|
|
cleanup_memory() |
|
|
original_size = image.size |
|
|
max_dim = 1536 |
|
|
if max(image.size) > max_dim: |
|
|
scale_ratio = max_dim / max(image.size) |
|
|
new_w = int(image.size[0] * scale_ratio) |
|
|
new_h = int(image.size[1] * scale_ratio) |
|
|
processing_image = image.resize((new_w, new_h), Image.LANCZOS) |
|
|
else: |
|
|
processing_image = image |
|
|
|
|
|
rmbg_model, _ = load_rmbg_model() |
|
|
rough_mask_pil = inference_segmentation(rmbg_model, processing_image, device, resolution=1024) |
|
|
|
|
|
mask_tensor = transforms.ToTensor()(rough_mask_pil).to(device) |
|
|
trimap_tensor = generate_trimap(mask_tensor, erode_kernel_size=25, dilate_kernel_size=25) |
|
|
trimap_pil = transforms.ToPILImage()(trimap_tensor.squeeze().cpu()) |
|
|
|
|
|
processor, model, _ = load_vitmatte_model() |
|
|
inputs = processor(images=processing_image, trimaps=trimap_pil, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
|
|
|
alphas = outputs.alphas |
|
|
alpha_np = alphas.squeeze().cpu().numpy() |
|
|
alpha_pil = Image.fromarray((alpha_np * 255).astype("uint8"), mode="L") |
|
|
|
|
|
if original_size != processing_image.size: |
|
|
alpha_pil = alpha_pil.resize(original_size, resample=Image.LANCZOS) |
|
|
|
|
|
cleanup_memory() |
|
|
return alpha_pil |
|
|
|
|
|
@st.cache_data(show_spinner=False) |
|
|
def process_background_removal(image_bytes, method="RMBG-1.4"): |
|
|
cleanup_memory() |
|
|
image = Image.open(io.BytesIO(image_bytes)).convert("RGBA") |
|
|
image_rgb = image.convert("RGB") |
|
|
|
|
|
if method == "RMBG-1.4": |
|
|
model, device = load_rmbg_model() |
|
|
mask = inference_segmentation(model, image_rgb, device) |
|
|
|
|
|
elif method == "BiRefNet (Heavy)": |
|
|
model, device = load_birefnet_model() |
|
|
mask = inference_segmentation(model, image_rgb, device, resolution=1024) |
|
|
|
|
|
elif method == "VitMatte (Refiner)": |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
mask = inference_vitmatte(image_rgb, device) |
|
|
|
|
|
else: |
|
|
return image |
|
|
|
|
|
final_image = image_rgb.copy() |
|
|
final_image.putalpha(mask) |
|
|
return final_image |
|
|
|
|
|
|
|
|
def run_swin_inference(image, processor, model): |
|
|
inputs = processor(image, return_tensors="pt") |
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
|
output = np.moveaxis(output, 0, -1) |
|
|
output = (output * 255.0).round().astype(np.uint8) |
|
|
return Image.fromarray(output) |
|
|
|
|
|
def upscale_chunk_logic(image, processor, model): |
|
|
if image.mode == 'RGBA': |
|
|
r, g, b, a = image.split() |
|
|
rgb_image = Image.merge('RGB', (r, g, b)) |
|
|
upscaled_rgb = run_swin_inference(rgb_image, processor, model) |
|
|
upscaled_a = a.resize(upscaled_rgb.size, Image.Resampling.LANCZOS) |
|
|
return Image.merge('RGBA', (*upscaled_rgb.split(), upscaled_a)) |
|
|
else: |
|
|
return run_swin_inference(image, processor, model) |
|
|
|
|
|
def process_tiled_upscale(image, scale_factor, grid_n, progress_bar): |
|
|
cleanup_memory() |
|
|
processor, model = load_upscaler(scale_factor) |
|
|
w, h = image.size |
|
|
rows = cols = grid_n |
|
|
tile_w = w // cols |
|
|
tile_h = h // rows |
|
|
overlap = 32 |
|
|
full_image = Image.new(image.mode, (w * scale_factor, h * scale_factor)) |
|
|
total_tiles = rows * cols |
|
|
count = 0 |
|
|
for y in range(rows): |
|
|
for x in range(cols): |
|
|
target_left = x * tile_w |
|
|
target_upper = y * tile_h |
|
|
target_right = w if x == cols - 1 else (x + 1) * tile_w |
|
|
target_lower = h if y == rows - 1 else (y + 1) * tile_h |
|
|
source_left = max(0, target_left - overlap) |
|
|
source_upper = max(0, target_upper - overlap) |
|
|
source_right = min(w, target_right + overlap) |
|
|
source_lower = min(h, target_lower + overlap) |
|
|
tile = image.crop((source_left, source_upper, source_right, source_lower)) |
|
|
upscaled_tile = upscale_chunk_logic(tile, processor, model) |
|
|
target_w = target_right - target_left |
|
|
target_h = target_lower - target_upper |
|
|
extra_left = target_left - source_left |
|
|
extra_upper = target_upper - source_upper |
|
|
crop_x = extra_left * scale_factor |
|
|
crop_y = extra_upper * scale_factor |
|
|
crop_w = target_w * scale_factor |
|
|
crop_h = target_h * scale_factor |
|
|
clean_tile = upscaled_tile.crop((crop_x, crop_y, crop_x + crop_w, crop_y + crop_h)) |
|
|
paste_x = target_left * scale_factor |
|
|
paste_y = target_upper * scale_factor |
|
|
full_image.paste(clean_tile, (paste_x, paste_y)) |
|
|
del tile, upscaled_tile, clean_tile |
|
|
cleanup_memory() |
|
|
count += 1 |
|
|
progress_bar.progress(count / total_tiles, text=f"Upscaling Tile {count}/{total_tiles}...") |
|
|
return full_image |
|
|
|
|
|
|
|
|
|
|
|
def apply_watermark(image, text, opacity, size_scale, position): |
|
|
if not text: return image |
|
|
watermark_image = image.convert("RGBA") |
|
|
text_layer = Image.new("RGBA", watermark_image.size, (255, 255, 255, 0)) |
|
|
draw = ImageDraw.Draw(text_layer) |
|
|
w, h = watermark_image.size |
|
|
base_font_size = int(h * 0.05) |
|
|
font_size = int(base_font_size * size_scale) |
|
|
try: |
|
|
font = ImageFont.load_default() |
|
|
except ImportError: |
|
|
font = ImageFont.load_default() |
|
|
bbox = draw.textbbox((0, 0), text, font=font) |
|
|
text_width = bbox[2] - bbox[0] |
|
|
text_height = bbox[3] - bbox[1] |
|
|
padding = 20 |
|
|
x, y = 0, 0 |
|
|
if position == "Bottom Right": |
|
|
x, y = w - text_width - padding, h - text_height - padding |
|
|
elif position == "Bottom Left": |
|
|
x, y = padding, h - text_height - padding |
|
|
elif position == "Top Right": |
|
|
x, y = w - text_width - padding, padding |
|
|
elif position == "Top Left": |
|
|
x, y = padding, padding |
|
|
elif position == "Center": |
|
|
x, y = (w - text_width) // 2, (h - text_height) // 2 |
|
|
alpha_val = int(opacity * 255) |
|
|
text_color = (255, 255, 255, alpha_val) |
|
|
draw.text((x, y), text, font=font, fill=text_color) |
|
|
output = Image.alpha_composite(watermark_image, text_layer) |
|
|
if image.mode == 'RGB': return output.convert('RGB') |
|
|
return output |
|
|
|
|
|
def convert_image_to_bytes_with_metadata(img, author=None, copyright_text=None): |
|
|
buf = io.BytesIO() |
|
|
pnginfo = PngImagePlugin.PngInfo() |
|
|
if author: |
|
|
pnginfo.add_text("Author", author) |
|
|
pnginfo.add_text("Software", "AI Image Lab Pro") |
|
|
if copyright_text: |
|
|
pnginfo.add_text("Copyright", copyright_text) |
|
|
img.save(buf, format="PNG", pnginfo=pnginfo) |
|
|
return buf.getvalue() |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
st.title("✨ AI Image Lab: Professional") |
|
|
|
|
|
|
|
|
st.sidebar.header("1. Input & Metadata") |
|
|
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "webp"]) |
|
|
|
|
|
clean_metadata_on_load = st.sidebar.checkbox("Strip Original Metadata on Load", value=False) |
|
|
|
|
|
if uploaded_file is not None: |
|
|
file_bytes = uploaded_file.getvalue() |
|
|
initial_img_inspect = Image.open(io.BytesIO(file_bytes)) |
|
|
with st.sidebar.expander("🔍 View Original Metadata"): |
|
|
if initial_img_inspect.info: |
|
|
safe_info = {k: v for k, v in initial_img_inspect.info.items() if isinstance(v, (str, int, float))} |
|
|
if safe_info: st.json(safe_info) |
|
|
else: st.write("Binary metadata hidden.") |
|
|
else: st.write("No metadata found.") |
|
|
|
|
|
if clean_metadata_on_load: |
|
|
clean_img = Image.new(initial_img_inspect.mode, initial_img_inspect.size) |
|
|
clean_img.putdata(list(initial_img_inspect.getdata())) |
|
|
buf = io.BytesIO() |
|
|
clean_img.save(buf, format="PNG") |
|
|
processing_bytes = buf.getvalue() |
|
|
st.sidebar.success("Metadata stripped.") |
|
|
else: |
|
|
processing_bytes = file_bytes |
|
|
|
|
|
|
|
|
st.sidebar.header("2. AI Processing") |
|
|
remove_bg = st.sidebar.checkbox("Remove Background", value=True) |
|
|
|
|
|
if remove_bg: |
|
|
bg_model = st.sidebar.selectbox("AI Model", ["BiRefNet (Heavy)", "RMBG-1.4", "VitMatte (Refiner)"], index=0) |
|
|
else: |
|
|
bg_model = "None" |
|
|
|
|
|
upscale_mode = st.sidebar.radio("Magnification", ["None", "2x", "4x"]) |
|
|
if upscale_mode != "None": |
|
|
grid_n = st.sidebar.slider("Grid Split", 2, 8, 4) |
|
|
else: |
|
|
grid_n = 2 |
|
|
|
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
st.sidebar.header("3. Studio Tools") |
|
|
|
|
|
bg_color_mode = st.sidebar.selectbox("Background Color", ["Transparent", "White", "Black", "Custom"]) |
|
|
custom_bg_color = "#FFFFFF" |
|
|
if bg_color_mode == "Custom": |
|
|
custom_bg_color = st.sidebar.color_picker("Pick color", "#FF0000") |
|
|
|
|
|
enable_smart_crop = st.sidebar.checkbox("Smart Auto-Crop (to Subject)", value=False) |
|
|
crop_padding = 0 |
|
|
if enable_smart_crop: |
|
|
crop_padding = st.sidebar.slider("Auto-Crop Padding", 0, 500, 50) |
|
|
|
|
|
st.sidebar.caption("Manual Crop (px)") |
|
|
col_c1, col_c2 = st.sidebar.columns(2) |
|
|
with col_c1: |
|
|
crop_top = st.number_input("Top", min_value=0, value=0, step=10) |
|
|
crop_left = st.number_input("Left", min_value=0, value=0, step=10) |
|
|
with col_c2: |
|
|
crop_bottom = st.number_input("Bottom", min_value=0, value=0, step=10) |
|
|
crop_right = st.number_input("Right", min_value=0, value=0, step=10) |
|
|
|
|
|
rotate_angle = st.sidebar.slider("Rotate", -180, 180, 0, 1) |
|
|
|
|
|
st.sidebar.subheader("Watermark") |
|
|
wm_text = st.sidebar.text_input("Watermark Text") |
|
|
wm_opacity = st.sidebar.slider("Opacity", 0.1, 1.0, 0.5) |
|
|
wm_size = st.sidebar.slider("Size Scale", 0.5, 3.0, 1.0) |
|
|
wm_position = st.sidebar.selectbox("Position", ["Bottom Right", "Bottom Left", "Top Right", "Top Left", "Center"]) |
|
|
|
|
|
|
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
st.sidebar.header("4. Output Settings") |
|
|
meta_author = st.sidebar.text_input("Author Name") |
|
|
meta_copyright = st.sidebar.text_input("Copyright Notice") |
|
|
|
|
|
|
|
|
|
|
|
if uploaded_file is not None: |
|
|
if remove_bg: |
|
|
with st.spinner(f"Removing background using {bg_model}..."): |
|
|
processed_image = process_background_removal(processing_bytes, bg_model) |
|
|
else: |
|
|
processed_image = Image.open(io.BytesIO(processing_bytes)).convert("RGBA") |
|
|
|
|
|
if upscale_mode != "None": |
|
|
scale = 4 if "4x" in upscale_mode else 2 |
|
|
cache_key = f"{uploaded_file.name}_clean{clean_metadata_on_load}_{bg_model}_{scale}_{grid_n}_v11" |
|
|
if "upscale_cache" not in st.session_state: st.session_state.upscale_cache = {} |
|
|
if cache_key in st.session_state.upscale_cache: |
|
|
processed_image = st.session_state.upscale_cache[cache_key] |
|
|
st.info("✅ Loaded upscaled image from cache") |
|
|
else: |
|
|
progress_bar = st.progress(0, text="Initializing AI models...") |
|
|
processed_image = process_tiled_upscale(processed_image, scale, grid_n, progress_bar) |
|
|
progress_bar.empty() |
|
|
st.session_state.upscale_cache[cache_key] = processed_image |
|
|
|
|
|
final_image = processed_image.copy() |
|
|
|
|
|
|
|
|
if rotate_angle != 0: |
|
|
final_image = final_image.rotate(rotate_angle, expand=True) |
|
|
|
|
|
|
|
|
if enable_smart_crop and final_image.mode == 'RGBA': |
|
|
alpha = final_image.getchannel('A') |
|
|
bbox = alpha.getbbox() |
|
|
if bbox: |
|
|
left, upper, right, lower = bbox |
|
|
w, h = final_image.size |
|
|
left = max(0, left - crop_padding) |
|
|
upper = max(0, upper - crop_padding) |
|
|
right = min(w, right + crop_padding) |
|
|
lower = min(h, lower + crop_padding) |
|
|
final_image = final_image.crop((left, upper, right, lower)) |
|
|
|
|
|
|
|
|
|
|
|
w, h = final_image.size |
|
|
|
|
|
valid_left = min(crop_left, w - 1) |
|
|
valid_top = min(crop_top, h - 1) |
|
|
valid_right = min(crop_right, w - valid_left - 1) |
|
|
valid_bottom = min(crop_bottom, h - valid_top - 1) |
|
|
|
|
|
if valid_left > 0 or valid_top > 0 or valid_right > 0 or valid_bottom > 0: |
|
|
final_image = final_image.crop(( |
|
|
valid_left, |
|
|
valid_top, |
|
|
w - valid_right, |
|
|
h - valid_bottom |
|
|
)) |
|
|
|
|
|
|
|
|
if bg_color_mode != "Transparent" and final_image.mode == 'RGBA': |
|
|
if bg_color_mode == "White": bg = Image.new("RGBA", final_image.size, "WHITE") |
|
|
elif bg_color_mode == "Black": bg = Image.new("RGBA", final_image.size, "BLACK") |
|
|
else: bg = Image.new("RGBA", final_image.size, custom_bg_color) |
|
|
bg.alpha_composite(final_image) |
|
|
final_image = bg.convert("RGB") |
|
|
|
|
|
|
|
|
if wm_text: |
|
|
final_image = apply_watermark(final_image, wm_text, wm_opacity, wm_size, wm_position) |
|
|
|
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
with col1: |
|
|
st.subheader("Original") |
|
|
st.image(Image.open(io.BytesIO(file_bytes)), use_container_width=True) |
|
|
|
|
|
with col2: |
|
|
st.subheader("Result") |
|
|
st.markdown("""<style>[data-testid="stImage"] {background-image: url('https://i.imgur.com/s1B49hR.png'); background-size: 20px 20px;}</style>""", unsafe_allow_html=True) |
|
|
st.image(final_image, use_container_width=True) |
|
|
|
|
|
st.markdown("---") |
|
|
download_data = convert_image_to_bytes_with_metadata(final_image, author=meta_author, copyright_text=meta_copyright) |
|
|
st.download_button( |
|
|
label="💾 Download Result (PNG with Metadata)", |
|
|
data=download_data, |
|
|
file_name="processed_image.png", |
|
|
mime="image/png" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |