Advanced_Image_Processing / src /streamlit_app.py
lukeafullard's picture
Update src/streamlit_app.py
edf2856 verified
import streamlit as st
from PIL import Image, ImageColor, ImageDraw, ImageFont, PngImagePlugin
import torch
import torch.nn.functional as F
from torchvision import transforms
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, Swin2SRForImageSuperResolution, VitMatteForImageMatting
import io
import numpy as np
import gc
# Page Configuration
st.set_page_config(layout="wide", page_title="AI Image Lab Pro")
# --- 1. MODEL LOADING (Cached - UNCHANGED) ---
@st.cache_resource
def load_rmbg_model():
model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4", trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, device
@st.cache_resource
def load_birefnet_model():
model = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, device
@st.cache_resource
def load_vitmatte_model():
processor = AutoImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return processor, model, device
@st.cache_resource
def load_upscaler(scale=2):
if scale == 4:
model_id = "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr"
else:
model_id = "caidas/swin2SR-classical-sr-x2-64"
processor = AutoImageProcessor.from_pretrained(model_id)
model = Swin2SRForImageSuperResolution.from_pretrained(model_id)
return processor, model
# --- 2. HELPER FUNCTIONS (AI & Processing - UNCHANGED) ---
def cleanup_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def find_mask_tensor(output):
if isinstance(output, torch.Tensor):
if output.dim() == 4 and output.shape[1] == 1: return output
elif output.dim() == 3 and output.shape[0] == 1: return output
return None
if hasattr(output, "logits"): return find_mask_tensor(output.logits)
elif isinstance(output, (list, tuple)):
for item in output:
found = find_mask_tensor(item)
if found is not None: return found
return None
def generate_trimap(mask_tensor, erode_kernel_size=10, dilate_kernel_size=10):
if mask_tensor.dim() == 3: mask_tensor = mask_tensor.unsqueeze(0)
erode_k = erode_kernel_size
dilate_k = dilate_kernel_size
dilated = F.max_pool2d(mask_tensor, kernel_size=dilate_k, stride=1, padding=dilate_k//2)
eroded = -F.max_pool2d(-mask_tensor, kernel_size=erode_k, stride=1, padding=erode_k//2)
trimap = torch.full_like(mask_tensor, 0.5)
trimap[eroded > 0.5] = 1.0
trimap[dilated < 0.5] = 0.0
return trimap
# --- 3. INFERENCE LOGIC (UNCHANGED) ---
def inference_segmentation(model, image, device, resolution=1024):
w, h = image.size
transform = transforms.Compose([
transforms.Resize((resolution, resolution)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(input_tensor)
result_tensor = find_mask_tensor(outputs)
if result_tensor is None: result_tensor = outputs[0] if isinstance(outputs, (list, tuple)) else outputs
if not isinstance(result_tensor, torch.Tensor):
if isinstance(result_tensor, (list, tuple)): result_tensor = result_tensor[0]
pred = result_tensor.squeeze().cpu()
if pred.max() > 1 or pred.min() < 0: pred = pred.sigmoid()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize((w, h), resample=Image.LANCZOS)
return mask
def inference_vitmatte(image, device):
cleanup_memory()
original_size = image.size
max_dim = 1536
if max(image.size) > max_dim:
scale_ratio = max_dim / max(image.size)
new_w = int(image.size[0] * scale_ratio)
new_h = int(image.size[1] * scale_ratio)
processing_image = image.resize((new_w, new_h), Image.LANCZOS)
else:
processing_image = image
rmbg_model, _ = load_rmbg_model()
rough_mask_pil = inference_segmentation(rmbg_model, processing_image, device, resolution=1024)
mask_tensor = transforms.ToTensor()(rough_mask_pil).to(device)
trimap_tensor = generate_trimap(mask_tensor, erode_kernel_size=25, dilate_kernel_size=25)
trimap_pil = transforms.ToPILImage()(trimap_tensor.squeeze().cpu())
processor, model, _ = load_vitmatte_model()
inputs = processor(images=processing_image, trimaps=trimap_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
alphas = outputs.alphas
alpha_np = alphas.squeeze().cpu().numpy()
alpha_pil = Image.fromarray((alpha_np * 255).astype("uint8"), mode="L")
if original_size != processing_image.size:
alpha_pil = alpha_pil.resize(original_size, resample=Image.LANCZOS)
cleanup_memory()
return alpha_pil
@st.cache_data(show_spinner=False)
def process_background_removal(image_bytes, method="RMBG-1.4"):
cleanup_memory()
image = Image.open(io.BytesIO(image_bytes)).convert("RGBA")
image_rgb = image.convert("RGB")
if method == "RMBG-1.4":
model, device = load_rmbg_model()
mask = inference_segmentation(model, image_rgb, device)
elif method == "BiRefNet (Heavy)":
model, device = load_birefnet_model()
mask = inference_segmentation(model, image_rgb, device, resolution=1024)
elif method == "VitMatte (Refiner)":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mask = inference_vitmatte(image_rgb, device)
else:
return image
final_image = image_rgb.copy()
final_image.putalpha(mask)
return final_image
# --- Upscaling Logic ---
def run_swin_inference(image, processor, model):
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, 0, -1)
output = (output * 255.0).round().astype(np.uint8)
return Image.fromarray(output)
def upscale_chunk_logic(image, processor, model):
if image.mode == 'RGBA':
r, g, b, a = image.split()
rgb_image = Image.merge('RGB', (r, g, b))
upscaled_rgb = run_swin_inference(rgb_image, processor, model)
upscaled_a = a.resize(upscaled_rgb.size, Image.Resampling.LANCZOS)
return Image.merge('RGBA', (*upscaled_rgb.split(), upscaled_a))
else:
return run_swin_inference(image, processor, model)
def process_tiled_upscale(image, scale_factor, grid_n, progress_bar):
cleanup_memory()
processor, model = load_upscaler(scale_factor)
w, h = image.size
rows = cols = grid_n
tile_w = w // cols
tile_h = h // rows
overlap = 32
full_image = Image.new(image.mode, (w * scale_factor, h * scale_factor))
total_tiles = rows * cols
count = 0
for y in range(rows):
for x in range(cols):
target_left = x * tile_w
target_upper = y * tile_h
target_right = w if x == cols - 1 else (x + 1) * tile_w
target_lower = h if y == rows - 1 else (y + 1) * tile_h
source_left = max(0, target_left - overlap)
source_upper = max(0, target_upper - overlap)
source_right = min(w, target_right + overlap)
source_lower = min(h, target_lower + overlap)
tile = image.crop((source_left, source_upper, source_right, source_lower))
upscaled_tile = upscale_chunk_logic(tile, processor, model)
target_w = target_right - target_left
target_h = target_lower - target_upper
extra_left = target_left - source_left
extra_upper = target_upper - source_upper
crop_x = extra_left * scale_factor
crop_y = extra_upper * scale_factor
crop_w = target_w * scale_factor
crop_h = target_h * scale_factor
clean_tile = upscaled_tile.crop((crop_x, crop_y, crop_x + crop_w, crop_y + crop_h))
paste_x = target_left * scale_factor
paste_y = target_upper * scale_factor
full_image.paste(clean_tile, (paste_x, paste_y))
del tile, upscaled_tile, clean_tile
cleanup_memory()
count += 1
progress_bar.progress(count / total_tiles, text=f"Upscaling Tile {count}/{total_tiles}...")
return full_image
# --- 4. NEW HELPER FUNCTIONS (Watermark & Metadata) ---
def apply_watermark(image, text, opacity, size_scale, position):
if not text: return image
watermark_image = image.convert("RGBA")
text_layer = Image.new("RGBA", watermark_image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(text_layer)
w, h = watermark_image.size
base_font_size = int(h * 0.05)
font_size = int(base_font_size * size_scale)
try:
font = ImageFont.load_default()
except ImportError:
font = ImageFont.load_default()
bbox = draw.textbbox((0, 0), text, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
padding = 20
x, y = 0, 0
if position == "Bottom Right":
x, y = w - text_width - padding, h - text_height - padding
elif position == "Bottom Left":
x, y = padding, h - text_height - padding
elif position == "Top Right":
x, y = w - text_width - padding, padding
elif position == "Top Left":
x, y = padding, padding
elif position == "Center":
x, y = (w - text_width) // 2, (h - text_height) // 2
alpha_val = int(opacity * 255)
text_color = (255, 255, 255, alpha_val)
draw.text((x, y), text, font=font, fill=text_color)
output = Image.alpha_composite(watermark_image, text_layer)
if image.mode == 'RGB': return output.convert('RGB')
return output
def convert_image_to_bytes_with_metadata(img, author=None, copyright_text=None):
buf = io.BytesIO()
pnginfo = PngImagePlugin.PngInfo()
if author:
pnginfo.add_text("Author", author)
pnginfo.add_text("Software", "AI Image Lab Pro")
if copyright_text:
pnginfo.add_text("Copyright", copyright_text)
img.save(buf, format="PNG", pnginfo=pnginfo)
return buf.getvalue()
# --- 5. MAIN APP ---
def main():
st.title("✨ AI Image Lab: Professional")
# --- Sidebar Section 1: Input & Metadata ---
st.sidebar.header("1. Input & Metadata")
uploaded_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "webp"])
clean_metadata_on_load = st.sidebar.checkbox("Strip Original Metadata on Load", value=False)
if uploaded_file is not None:
file_bytes = uploaded_file.getvalue()
initial_img_inspect = Image.open(io.BytesIO(file_bytes))
with st.sidebar.expander("🔍 View Original Metadata"):
if initial_img_inspect.info:
safe_info = {k: v for k, v in initial_img_inspect.info.items() if isinstance(v, (str, int, float))}
if safe_info: st.json(safe_info)
else: st.write("Binary metadata hidden.")
else: st.write("No metadata found.")
if clean_metadata_on_load:
clean_img = Image.new(initial_img_inspect.mode, initial_img_inspect.size)
clean_img.putdata(list(initial_img_inspect.getdata()))
buf = io.BytesIO()
clean_img.save(buf, format="PNG")
processing_bytes = buf.getvalue()
st.sidebar.success("Metadata stripped.")
else:
processing_bytes = file_bytes
# --- Sidebar Section 2: AI Processing ---
st.sidebar.header("2. AI Processing")
remove_bg = st.sidebar.checkbox("Remove Background", value=True)
if remove_bg:
bg_model = st.sidebar.selectbox("AI Model", ["BiRefNet (Heavy)", "RMBG-1.4", "VitMatte (Refiner)"], index=0)
else:
bg_model = "None"
upscale_mode = st.sidebar.radio("Magnification", ["None", "2x", "4x"])
if upscale_mode != "None":
grid_n = st.sidebar.slider("Grid Split", 2, 8, 4)
else:
grid_n = 2
# --- Sidebar Section 3: Studio Tools ---
st.sidebar.markdown("---")
st.sidebar.header("3. Studio Tools")
bg_color_mode = st.sidebar.selectbox("Background Color", ["Transparent", "White", "Black", "Custom"])
custom_bg_color = "#FFFFFF"
if bg_color_mode == "Custom":
custom_bg_color = st.sidebar.color_picker("Pick color", "#FF0000")
enable_smart_crop = st.sidebar.checkbox("Smart Auto-Crop (to Subject)", value=False)
crop_padding = 0
if enable_smart_crop:
crop_padding = st.sidebar.slider("Auto-Crop Padding", 0, 500, 50)
st.sidebar.caption("Manual Crop (px)")
col_c1, col_c2 = st.sidebar.columns(2)
with col_c1:
crop_top = st.number_input("Top", min_value=0, value=0, step=10)
crop_left = st.number_input("Left", min_value=0, value=0, step=10)
with col_c2:
crop_bottom = st.number_input("Bottom", min_value=0, value=0, step=10)
crop_right = st.number_input("Right", min_value=0, value=0, step=10)
rotate_angle = st.sidebar.slider("Rotate", -180, 180, 0, 1)
st.sidebar.subheader("Watermark")
wm_text = st.sidebar.text_input("Watermark Text")
wm_opacity = st.sidebar.slider("Opacity", 0.1, 1.0, 0.5)
wm_size = st.sidebar.slider("Size Scale", 0.5, 3.0, 1.0)
wm_position = st.sidebar.selectbox("Position", ["Bottom Right", "Bottom Left", "Top Right", "Top Left", "Center"])
# --- Sidebar Section 4: Output Settings ---
st.sidebar.markdown("---")
st.sidebar.header("4. Output Settings")
meta_author = st.sidebar.text_input("Author Name")
meta_copyright = st.sidebar.text_input("Copyright Notice")
# --- Main Application Logic ---
if uploaded_file is not None:
if remove_bg:
with st.spinner(f"Removing background using {bg_model}..."):
processed_image = process_background_removal(processing_bytes, bg_model)
else:
processed_image = Image.open(io.BytesIO(processing_bytes)).convert("RGBA")
if upscale_mode != "None":
scale = 4 if "4x" in upscale_mode else 2
cache_key = f"{uploaded_file.name}_clean{clean_metadata_on_load}_{bg_model}_{scale}_{grid_n}_v11"
if "upscale_cache" not in st.session_state: st.session_state.upscale_cache = {}
if cache_key in st.session_state.upscale_cache:
processed_image = st.session_state.upscale_cache[cache_key]
st.info("✅ Loaded upscaled image from cache")
else:
progress_bar = st.progress(0, text="Initializing AI models...")
processed_image = process_tiled_upscale(processed_image, scale, grid_n, progress_bar)
progress_bar.empty()
st.session_state.upscale_cache[cache_key] = processed_image
final_image = processed_image.copy()
# A. Rotation
if rotate_angle != 0:
final_image = final_image.rotate(rotate_angle, expand=True)
# B. Smart Auto-Crop
if enable_smart_crop and final_image.mode == 'RGBA':
alpha = final_image.getchannel('A')
bbox = alpha.getbbox()
if bbox:
left, upper, right, lower = bbox
w, h = final_image.size
left = max(0, left - crop_padding)
upper = max(0, upper - crop_padding)
right = min(w, right + crop_padding)
lower = min(h, lower + crop_padding)
final_image = final_image.crop((left, upper, right, lower))
# C. Manual Crop
# Applied after Smart Crop so you can refine it
w, h = final_image.size
# Ensure we don't crop beyond image dimensions
valid_left = min(crop_left, w - 1)
valid_top = min(crop_top, h - 1)
valid_right = min(crop_right, w - valid_left - 1)
valid_bottom = min(crop_bottom, h - valid_top - 1)
if valid_left > 0 or valid_top > 0 or valid_right > 0 or valid_bottom > 0:
final_image = final_image.crop((
valid_left,
valid_top,
w - valid_right,
h - valid_bottom
))
# D. Background Compositing
if bg_color_mode != "Transparent" and final_image.mode == 'RGBA':
if bg_color_mode == "White": bg = Image.new("RGBA", final_image.size, "WHITE")
elif bg_color_mode == "Black": bg = Image.new("RGBA", final_image.size, "BLACK")
else: bg = Image.new("RGBA", final_image.size, custom_bg_color)
bg.alpha_composite(final_image)
final_image = bg.convert("RGB")
# E. Watermark
if wm_text:
final_image = apply_watermark(final_image, wm_text, wm_opacity, wm_size, wm_position)
# --- Display ---
col1, col2 = st.columns(2)
with col1:
st.subheader("Original")
st.image(Image.open(io.BytesIO(file_bytes)), use_container_width=True)
with col2:
st.subheader("Result")
st.markdown("""<style>[data-testid="stImage"] {background-image: url('https://i.imgur.com/s1B49hR.png'); background-size: 20px 20px;}</style>""", unsafe_allow_html=True)
st.image(final_image, use_container_width=True)
st.markdown("---")
download_data = convert_image_to_bytes_with_metadata(final_image, author=meta_author, copyright_text=meta_copyright)
st.download_button(
label="💾 Download Result (PNG with Metadata)",
data=download_data,
file_name="processed_image.png",
mime="image/png"
)
if __name__ == "__main__":
main()