cortex / app.py
junaid17's picture
Update app.py
84ef2a8 verified
import shutil
from fastapi.responses import FileResponse
import asyncio
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from utils import STT, TTS
from data_ingestion import Ingest_Data
from RAG import app as rag_app, Ragbot_State, reload_vector_store
import os
# Initialize FastAPI
app = FastAPI(title="LangGraph RAG Chatbot", version="1.0")
# --- Pydantic Models ---
class ChatRequest(BaseModel):
query: str
thread_id: str = "default_user"
use_rag: bool = False
use_web: bool = False
model_name: str = "gpt"
class TTSRequest(BaseModel):
text: str
voice: str = "en-US-AriaNeural"
# --- Endpoints ---
@app.get("/")
def health_check():
return {"status": "running", "message": "Bot is ready"}
@app.post("/upload")
async def upload_document(
file: UploadFile = File(...),
background_tasks: BackgroundTasks = BackgroundTasks()
):
try:
temp_filename = f"temp_{file.filename}"
with open(temp_filename, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
def process_and_reload(path):
try:
result = Ingest_Data(path)
print(f"Ingestion Result: {result}")
reload_vector_store()
except Exception as e:
print(f"Error processing background task: {e}")
finally:
if os.path.exists(path):
os.remove(path)
background_tasks.add_task(process_and_reload, temp_filename)
return {
"message": "File received. Processing started in background.",
"filename": file.filename
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat")
async def chat_endpoint(request: ChatRequest):
"""
Standard Chat Endpoint (Non-Streaming).
Waits for the LLM to finish and returns the full JSON response.
"""
try:
# 1. Setup Config & Inputs
config = {"configurable": {"thread_id": request.thread_id}}
inputs = {
"query": request.query,
"RAG": request.use_rag,
"web_search": request.use_web,
"model_name": request.model_name,
"context": [],
"metadata": [],
"web_context": "",
}
# 2. Invoke the Graph (Waits for completion)
# using ainvoke is better for FastAPI to prevent blocking the server
result = await rag_app.ainvoke(inputs, config=config)
# 3. Extract the last message (AI Response)
last_message = result['response'][-1]
# 4. Return standard JSON
return {
"response": last_message.content,
"thread_id": request.thread_id
}
except Exception as e:
print(f"Error generation response: {e}")
raise HTTPException(status_code=500, detail=str(e))
# ---------------- STT ---------------- #
@app.post("/stt")
async def transcribe_audio(file: UploadFile = File(...)):
try:
return await STT(file)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ---------------- TTS ---------------- #
@app.post("/tts")
async def text_to_speech(req: TTSRequest):
try:
audio_path = await TTS(req.text, req.voice)
return FileResponse(audio_path, media_type="audio/mpeg", filename="output.mp3")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))