Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from huggingface_hub import AsyncInferenceClient, InferenceClient | |
| import asyncio | |
| model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| async_client = AsyncInferenceClient(model=model_name) | |
| sync_client = InferenceClient(model=model_name) | |
| def summarise_pdf(pdf): | |
| loader = PyPDFLoader(pdf.name) | |
| pages = loader.load() | |
| summary = asyncio.run(map_method(pages)) | |
| return summary | |
| async def map_method(pages): | |
| chunk_size = 10 | |
| chunks = [pages[i : i + chunk_size] for i in range(0, len(pages), chunk_size)] | |
| tasks = [] | |
| for chunk in chunks: | |
| combined_content = combine_pages(chunk) | |
| tasks.append(summarise_chunk(combined_content)) | |
| chunk_summaries = await asyncio.gather(*tasks) | |
| final_summary = reduce_summaries(chunk_summaries) | |
| return final_summary | |
| def combine_pages(pages): | |
| combined_content = "\n\n".join([page.page_content for page in pages]) | |
| return combined_content | |
| async def summarise_chunk(chunk): | |
| prompt = f"""Summarize the following document in 150-300 words, ensuring the most important ideas and main themes are highlighted:\n\n{chunk}""" | |
| message = [{"role": "user", "content": prompt}] | |
| result = await async_client.chat_completion( | |
| messages=message, | |
| max_tokens=2048, | |
| temperature=0.1, | |
| ) | |
| return result.choices[0].message["content"].strip() | |
| def reduce_summaries(summaries): | |
| combined_summaries = "\n\n".join(summaries) | |
| reduce_prompt = f"Below is a collection of summaries, please synthesize them into a cohesive final summary, highlighting the key themes. Ensure the summary is concise and does not exceed 400 words:\n\n{combined_summaries}" | |
| message = [{"role": "user", "content": reduce_prompt}] | |
| result = sync_client.chat_completion( | |
| messages=message, | |
| max_tokens=2048, | |
| temperature=0.1, | |
| ) | |
| return result.choices[0].message["content"].strip() | |
| with gr.Blocks(theme=gr.themes.Base()) as demo: | |
| gr.Markdown("<H1>PDF Summariser</H1>") | |
| gr.Markdown("<H3>Upload a PDF file and generate a summary</H3>") | |
| gr.Markdown( | |
| "<H6>This project uses a MapReduce method to split the PDF into chunks, generate summaries of each of the chunks asynchronously, and reduce them into a single final summary.</H6>" | |
| ) | |
| gr.Markdown( | |
| "<H6>Note: I have included The Metamorphosis by Franz Kafka as a default PDF to demonstrate its working on a large document. Replace this with any PDF you would like to summarise.</H6>" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| pdf = gr.File(label="Upload PDF", value="./TheMetamorphosis.pdf") | |
| summarise_btn = gr.Button(value="Summarise PDF 🚀", variant="primary") | |
| with gr.Column(scale=3): | |
| summary = gr.TextArea(label="Summary") | |
| summarise_btn.click(fn=summarise_pdf, inputs=pdf, outputs=summary) | |
| demo.launch() | |