Chemistry Batch 12: Spectroscopy & Analysis

Process 1: UV-Vis Spectroscopy
graph TD A1[Light Source] --> B1[UV-Vis Spectroscopy Method] C1[Sample Solution] --> D1[Wavelength Control] E1[Detector System] --> F1[Data Collection] B1 --> G1[Monochromator Setup] D1 --> H1[Wavelength Selection] F1 --> I1[Signal Processing] G1 --> J1[Light Dispersion] H1 --> K1[Wavelength Range] I1 --> L1[Absorbance Measurement] J1 --> M1[Light Transmission] K1 --> L1 L1 --> N1[Electronic Transitions] M1 --> O1[Sample Irradiation] N1 --> P1[Absorption Process] O1 --> Q1[Spectroscopic Analysis] P1 --> R1[Absorbance Spectrum] Q1 --> S1[Peak Analysis] R1 --> T1[Concentration Determination] S1 --> U1[Beer's Law Analysis] T1 --> V1[Concentration Calculation] U1 --> W1[Spectroscopic Efficiency] V1 --> X1[Sample Characterization] W1 --> Y1[Process Optimization] X1 --> Z1[Final Absorption Spectrum] Y1 --> Z1 style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Figure 1. UV-Vis spectroscopy process showing electronic transitions, absorbance measurement, and concentration determination.
Process 2: IR Spectroscopy
graph TD A2[IR Radiation] --> B2[IR Spectroscopy Method] C2[Molecular Sample] --> D2[Wavelength Control] E2[Detector System] --> F2[Data Collection] B2 --> G2[IR Source Setup] D2 --> H2[Wavelength Selection] F2 --> I2[Signal Processing] G2 --> J2[Radiation Generation] H2 --> K2[Frequency Range] I2 --> L2[Transmittance Measurement] J2 --> M2[Radiation Transmission] K2 --> L2 L2 --> N2[Molecular Vibrations] M2 --> O2[Sample Irradiation] N2 --> P2[Vibrational Absorption] O2 --> Q2[Spectroscopic Analysis] P2 --> R2[IR Spectrum] Q2 --> S2[Peak Assignment] R2 --> T2[Functional Group Analysis] S2 --> U2[Vibrational Analysis] T2 --> V2[Group Identification] U2 --> W2[Spectroscopic Efficiency] V2 --> X2[Molecular Characterization] W2 --> Y2[Process Optimization] X2 --> Z2[Final IR Spectrum] Y2 --> Z2 style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Figure 2. IR spectroscopy process illustrating molecular vibrations, functional group analysis, and molecular characterization.
Process 3: NMR Spectroscopy
graph TD A3[Magnetic Field] --> B3[NMR Spectroscopy Method] C3[Nuclear Sample] --> D3[Radiofrequency Control] E3[Detector System] --> F3[Data Collection] B3 --> G3[Magnet Setup] D3 --> H3[RF Pulse Control] F3 --> I3[Signal Processing] G3 --> J3[Field Alignment] H3 --> K3[Pulse Sequence] I3 --> L3[Free Induction Decay] J3 --> M3[Nuclear Alignment] K3 --> L3 L3 --> N3[Nuclear Spin Transitions] M3 --> O3[Sample Irradiation] N3 --> P3[Spin Relaxation] O3 --> Q3[Spectroscopic Analysis] P3 --> R3[NMR Spectrum] Q3 --> S3[Chemical Shift Analysis] R3 --> T3[Molecular Structure] S3 --> U3[Spin Analysis] T3 --> V3[Structure Determination] U3 --> W3[Spectroscopic Efficiency] V3 --> X3[Molecular Characterization] W3 --> Y3[Process Optimization] X3 --> Z3[Final NMR Spectrum] Y3 --> Z3 style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Figure 3. NMR spectroscopy process showing nuclear spin transitions, chemical shift analysis, and molecular structure determination.
Process 4: Mass Spectrometry
graph TD A4[Sample Molecules] --> B4[Mass Spectrometry Method] C4[Ionization Source] --> D4[Mass Analyzer] E4[Detector System] --> F4[Data Collection] B4 --> G4[Sample Introduction] D4 --> H4[Mass Separation] F4 --> I4[Signal Processing] G4 --> J4[Sample Vaporization] H4 --> K4[Mass-to-Charge Ratio] I4 --> L4[Ion Detection] J4 --> M4[Molecular Ionization] K4 --> L4 L4 --> N4[Ion Separation] M4 --> O4[Ion Formation] N4 --> P4[Mass Analysis] O4 --> Q4[Spectroscopic Analysis] P4 --> R4[Mass Spectrum] Q4 --> S4[Fragmentation Analysis] R4 --> T4[Molecular Weight] S4 --> U4[Fragmentation Pattern] T4 --> V4[Molecular Identification] U4 --> W4[Spectroscopic Efficiency] V4 --> X4[Molecular Characterization] W4 --> Y4[Process Optimization] X4 --> Z4[Final Mass Spectrum] Y4 --> Z4 style A4 fill:#ff6b6b,color:#fff style C4 fill:#ff6b6b,color:#fff style E4 fill:#ff6b6b,color:#fff style B4 fill:#ffd43b,color:#000 style D4 fill:#ffd43b,color:#000 style F4 fill:#ffd43b,color:#000 style G4 fill:#ffd43b,color:#000 style H4 fill:#ffd43b,color:#000 style I4 fill:#ffd43b,color:#000 style J4 fill:#ffd43b,color:#000 style K4 fill:#ffd43b,color:#000 style L4 fill:#ffd43b,color:#000 style M4 fill:#51cf66,color:#fff style N4 fill:#51cf66,color:#fff style O4 fill:#51cf66,color:#fff style P4 fill:#51cf66,color:#fff style Q4 fill:#51cf66,color:#fff style R4 fill:#51cf66,color:#fff style S4 fill:#51cf66,color:#fff style T4 fill:#51cf66,color:#fff style U4 fill:#51cf66,color:#fff style V4 fill:#51cf66,color:#fff style W4 fill:#51cf66,color:#fff style X4 fill:#51cf66,color:#fff style Y4 fill:#51cf66,color:#fff style Z4 fill:#b197fc,color:#fff
Figure 4. Mass spectrometry process showing ionization, fragmentation, and molecular weight determination.
Process 5: Chromatography
graph TD A5[Sample Mixture] --> B5[Chromatography Method] C5[Stationary Phase] --> D5[Mobile Phase] E5[Detector System] --> F5[Data Collection] B5 --> G5[Column Preparation] D5 --> H5[Flow Control] F5 --> I5[Signal Processing] G5 --> J5[Column Packing] H5 --> K5[Flow Rate] I5 --> L5[Retention Time] J5 --> M5[Sample Injection] K5 --> L5 L5 --> N5[Separation Process] M5 --> O5[Sample Loading] N5 --> P5[Chromatographic Separation] O5 --> Q5[Analytical Process] P5 --> R5[Chromatogram] Q5 --> S5[Peak Analysis] R5 --> T5[Component Separation] S5 --> U5[Retention Analysis] T5 --> V5[Component Identification] U5 --> W5[Chromatographic Efficiency] V5 --> X5[Sample Characterization] W5 --> Y5[Process Optimization] X5 --> Z5[Final Chromatogram] Y5 --> Z5 style A5 fill:#ff6b6b,color:#fff style C5 fill:#ff6b6b,color:#fff style E5 fill:#ff6b6b,color:#fff style B5 fill:#ffd43b,color:#000 style D5 fill:#ffd43b,color:#000 style F5 fill:#ffd43b,color:#000 style G5 fill:#ffd43b,color:#000 style H5 fill:#ffd43b,color:#000 style I5 fill:#ffd43b,color:#000 style J5 fill:#ffd43b,color:#000 style K5 fill:#ffd43b,color:#000 style L5 fill:#ffd43b,color:#000 style M5 fill:#51cf66,color:#fff style N5 fill:#51cf66,color:#fff style O5 fill:#51cf66,color:#fff style P5 fill:#51cf66,color:#fff style Q5 fill:#51cf66,color:#fff style R5 fill:#51cf66,color:#fff style S5 fill:#51cf66,color:#fff style T5 fill:#51cf66,color:#fff style U5 fill:#51cf66,color:#fff style V5 fill:#51cf66,color:#fff style W5 fill:#51cf66,color:#fff style X5 fill:#51cf66,color:#fff style Y5 fill:#51cf66,color:#fff style Z5 fill:#b197fc,color:#fff
Figure 5. Chromatography process showing separation, retention analysis, and component identification.

Gary Welz

Retired Faculty Member

John Jay College, CUNY (Department of Mathematics and Computer Science)

Borough of Manhattan Community College, CUNY

CUNY Graduate Center (New Media Lab)

Email: gwelz@jjay.cuny.edu