Chemistry Batch 09: Surface Chemistry & Catalysis

Process 1: Heterogeneous Catalysis
graph TD A1[Reactant Molecules] --> B1[Catalyst Surface Method] C1[Catalyst Material] --> D1[Surface Characterization] E1[Reaction Conditions] --> F1[Temperature Control] B1 --> G1[Surface Preparation] D1 --> H1[Active Site Analysis] F1 --> I1[Pressure Regulation] G1 --> J1[Surface Cleaning] H1 --> K1[Site Density] I1 --> L1[Reaction Pressure] J1 --> M1[Surface Activation] K1 --> L1 L1 --> N1[Adsorption Process] M1 --> O1[Reactant Adsorption] N1 --> P1[Surface Reaction] O1 --> Q1[Catalytic Activity] P1 --> R1[Product Formation] Q1 --> S1[Reaction Rate] R1 --> T1[Desorption Process] S1 --> U1[Turnover Frequency] T1 --> V1[Product Collection] U1 --> W1[Catalyst Performance] V1 --> X1[Yield Analysis] W1 --> Y1[Optimization Process] X1 --> Z1[Catalytic Efficiency] Y1 --> Z1 style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Figure 1. Heterogeneous catalysis process showing surface adsorption, reaction mechanism, and catalytic efficiency optimization.
Process 2: Photocatalysis
graph TD A2[Light Energy] --> B2[Photocatalyst Method] C2[Semiconductor Material] --> D2[Band Gap Analysis] E2[Reactant Solution] --> F2[Irradiation Setup] B2 --> G2[Catalyst Synthesis] D2 --> H2[Electronic Structure] F2 --> I2[Light Source] G2 --> J2[Surface Modification] H2 --> K2[Valence Band] I2 --> L2[Wavelength Control] J2 --> M2[Active Site Creation] K2 --> L2 L2 --> N2[Photon Absorption] M2 --> O2[Electron Excitation] N2 --> P2[Charge Separation] O2 --> Q2[Photocatalytic Activity] P2 --> R2[Redox Reactions] Q2 --> S2[Reaction Kinetics] R2 --> T2[Product Formation] S2 --> U2[Quantum Efficiency] T2 --> V2[Product Analysis] U2 --> W2[Performance Evaluation] V2 --> X2[Conversion Yield] W2 --> Y2[Process Optimization] X2 --> Z2[Photocatalytic Efficiency] Y2 --> Z2 style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Figure 2. Photocatalysis process illustrating light-driven reactions, charge separation, and photocatalytic efficiency.
Process 3: Enzyme Catalysis
graph TD A3[Substrate Molecules] --> B3[Enzyme Catalysis Method] C3[Enzyme Protein] --> D3[Active Site Analysis] E3[Reaction Buffer] --> F3[Temperature Control] B3 --> G3[Enzyme Purification] D3 --> H3[Site Characterization] F3 --> I3[pH Regulation] G3 --> J3[Conformation Analysis] H3 --> K3[Binding Affinity] I3 --> L3[Optimal Conditions] J3 --> M3[Substrate Binding] K3 --> L3 L3 --> N3[Enzyme-Substrate Complex] M3 --> O3[Conformational Change] N3 --> P3[Catalytic Reaction] O3 --> Q3[Enzymatic Activity] P3 --> R3[Product Formation] Q3 --> S3[Reaction Rate] R3 --> T3[Product Release] S3 --> U3[Turnover Number] T3 --> V3[Product Analysis] U3 --> W3[Enzyme Performance] V3 --> X3[Conversion Efficiency] W3 --> Y3[Optimization Process] X3 --> Z3[Enzymatic Efficiency] Y3 --> Z3 style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Figure 3. Enzyme catalysis process showing substrate binding, catalytic reaction, and enzymatic efficiency optimization.
Process 4: Zeolite Catalysis
graph TD A4[Reactant Molecules] --> B4[Zeolite Catalysis Method] C4[Zeolite Framework] --> D4[Pore Structure Analysis] E4[Reaction Conditions] --> F4[Temperature Control] B4 --> G4[Zeolite Synthesis] D4 --> H4[Pore Size Distribution] F4 --> I4[Pressure Regulation] G4 --> J4[Framework Assembly] H4 --> K4[Channel Geometry] I4 --> L4[Reaction Pressure] J4 --> M4[Active Site Creation] K4 --> L4 L4 --> N4[Molecular Sieving] M4 --> O4[Reactant Diffusion] N4 --> P4[Shape-Selective Reaction] O4 --> Q4[Catalytic Activity] P4 --> R4[Product Formation] Q4 --> S4[Reaction Selectivity] R4 --> T4[Product Diffusion] S4 --> U4[Selectivity Analysis] T4 --> V4[Product Collection] U4 --> W4[Catalyst Performance] V4 --> X4[Conversion Yield] W4 --> Y4[Process Optimization] X4 --> Z4[Shape-Selective Efficiency] Y4 --> Z4 style A4 fill:#ff6b6b,color:#fff style C4 fill:#ff6b6b,color:#fff style E4 fill:#ff6b6b,color:#fff style B4 fill:#ffd43b,color:#000 style D4 fill:#ffd43b,color:#000 style F4 fill:#ffd43b,color:#000 style G4 fill:#ffd43b,color:#000 style H4 fill:#ffd43b,color:#000 style I4 fill:#ffd43b,color:#000 style J4 fill:#ffd43b,color:#000 style K4 fill:#ffd43b,color:#000 style L4 fill:#ffd43b,color:#000 style M4 fill:#51cf66,color:#fff style N4 fill:#51cf66,color:#fff style O4 fill:#51cf66,color:#fff style P4 fill:#51cf66,color:#fff style Q4 fill:#51cf66,color:#fff style R4 fill:#51cf66,color:#fff style S4 fill:#51cf66,color:#fff style T4 fill:#51cf66,color:#fff style U4 fill:#51cf66,color:#fff style V4 fill:#51cf66,color:#fff style W4 fill:#51cf66,color:#fff style X4 fill:#51cf66,color:#fff style Y4 fill:#51cf66,color:#fff style Z4 fill:#b197fc,color:#fff
Figure 4. Zeolite catalysis process showing molecular sieving, shape-selective reactions, and catalytic efficiency.
Process 5: Supported Catalysts
graph TD A5[Metal Precursors] --> B5[Supported Catalyst Method] C5[Support Material] --> D5[Surface Area Analysis] E5[Reaction Conditions] --> F5[Temperature Control] B5 --> G5[Support Preparation] D5 --> H5[Pore Volume] F5 --> I5[Pressure Regulation] G5 --> J5[Surface Modification] H5 --> K5[Active Site Density] I5 --> L5[Reaction Pressure] J5 --> M5[Metal Deposition] K5 --> L5 L5 --> N5[Catalyst Activation] M5 --> O5[Particle Formation] N5 --> P5[Surface Reaction] O5 --> Q5[Catalytic Activity] P5 --> R5[Product Formation] Q5 --> S5[Reaction Rate] R5 --> T5[Product Desorption] S5 --> U5[Turnover Frequency] T5 --> V5[Product Analysis] U5 --> W5[Catalyst Performance] V5 --> X5[Conversion Yield] W5 --> Y5[Stability Testing] X5 --> Z5[Supported Catalyst Efficiency] Y5 --> Z5 style A5 fill:#ff6b6b,color:#fff style C5 fill:#ff6b6b,color:#fff style E5 fill:#ff6b6b,color:#fff style B5 fill:#ffd43b,color:#000 style D5 fill:#ffd43b,color:#000 style F5 fill:#ffd43b,color:#000 style G5 fill:#ffd43b,color:#000 style H5 fill:#ffd43b,color:#000 style I5 fill:#ffd43b,color:#000 style J5 fill:#ffd43b,color:#000 style K5 fill:#ffd43b,color:#000 style L5 fill:#ffd43b,color:#000 style M5 fill:#51cf66,color:#fff style N5 fill:#51cf66,color:#fff style O5 fill:#51cf66,color:#fff style P5 fill:#51cf66,color:#fff style Q5 fill:#51cf66,color:#fff style R5 fill:#51cf66,color:#fff style S5 fill:#51cf66,color:#fff style T5 fill:#51cf66,color:#fff style U5 fill:#51cf66,color:#fff style V5 fill:#51cf66,color:#fff style W5 fill:#51cf66,color:#fff style X5 fill:#51cf66,color:#fff style Y5 fill:#51cf66,color:#fff style Z5 fill:#b197fc,color:#fff
Figure 5. Supported catalyst process showing metal deposition, surface reactions, and catalytic performance optimization.

Gary Welz

Retired Faculty Member

John Jay College, CUNY (Department of Mathematics and Computer Science)

Borough of Manhattan Community College, CUNY

CUNY Graduate Center (New Media Lab)

Email: gwelz@jjay.cuny.edu