Chemistry Batch 08: Electrochemical Processes

Process 1: Electrochemical Cell Design
graph TD A1[Electrode Materials] --> B1[Cell Design Method] C1[Electrolyte Solution] --> D1[Potential Measurement] E1[External Circuit] --> F1[Current Control] B1 --> G1[Anode Selection] D1 --> H1[Voltage Monitoring] F1 --> I1[Resistance Optimization] G1 --> J1[Oxidation Potential] H1 --> K1[Cell Voltage] I1 --> L1[Current Density] J1 --> M1[Electron Release] K1 --> L1 L1 --> N1[Charge Transfer] M1 --> O1[Ion Migration] N1 --> P1[Electrochemical Reaction] O1 --> Q1[Cell Performance] P1 --> R1[Product Formation] Q1 --> S1[Efficiency Calculation] R1 --> T1[Reaction Products] S1 --> U1[Performance Metrics] T1 --> V1[Yield Analysis] U1 --> W1[Optimization Parameters] V1 --> X1[Process Validation] W1 --> Y1[Design Refinement] X1 --> Z1[Final Cell Configuration] Y1 --> Z1 style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Figure 1. Electrochemical cell design process showing systematic approach to electrode selection, electrolyte optimization, and performance evaluation.
Process 2: Battery Chemistry
graph TD A2[Lithium Ions] --> B2[Battery Design Method] C2[Electrode Materials] --> D2[Electrolyte Selection] E2[Separator Membrane] --> F2[Cell Assembly] B2 --> G2[Anode Material] D2 --> H2[Ion Conductivity] F2 --> I2[Safety Features] G2 --> J2[Lithium Storage] H2 --> K2[Ion Transport] I2 --> L2[Thermal Management] J2 --> M2[Intercalation Process] K2 --> L2 L2 --> N2[Charge Transfer] M2 --> O2[Electron Flow] N2 --> P2[Electrochemical Reaction] O2 --> Q2[Energy Storage] P2 --> R2[Voltage Generation] Q2 --> S2[Capacity Measurement] R2 --> T2[Power Output] S2 --> U2[Performance Testing] T2 --> V2[Cycle Life Analysis] U2 --> W2[Efficiency Calculation] V2 --> X2[Degradation Study] W2 --> Y2[Optimization Process] X2 --> Z2[Final Battery Design] Y2 --> Z2 style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Figure 2. Battery chemistry process illustrating lithium-ion battery design, assembly, and performance optimization.
Process 3: Corrosion Mechanisms
graph TD A3[Metal Surface] --> B3[Corrosion Analysis Method] C3[Oxygen Molecules] --> D3[Moisture Content] E3[Electrolyte Solution] --> F3[Environmental Factors] B3 --> G3[Surface Characterization] D3 --> H3[Humidity Control] F3 --> I3[Temperature Monitoring] G3 --> J3[Oxidation Sites] H3 --> K3[Water Adsorption] I3 --> L3[Corrosion Rate] J3 --> M3[Electron Transfer] K3 --> L3 L3 --> N3[Ion Formation] M3 --> O3[Oxide Formation] N3 --> P3[Corrosion Reaction] O3 --> Q3[Surface Degradation] P3 --> R3[Rust Formation] Q3 --> S3[Protective Coating] R3 --> T3[Corrosion Products] S3 --> U3[Inhibition Methods] T3 --> V3[Prevention Strategies] U3 --> W3[Coating Application] V3 --> X3[Performance Evaluation] W3 --> Y3[Protection Mechanism] X3 --> Z3[Corrosion Prevention] Y3 --> Z3 style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Figure 3. Corrosion mechanisms process showing oxidation, rust formation, and protective coating strategies.
Process 4: Electroplating
graph TD A4[Metal Ions] --> B4[Electroplating Method] C4[Substrate Surface] --> D4[Electrolyte Bath] E4[Power Supply] --> F4[Current Control] B4 --> G4[Surface Preparation] D4 --> H4[Solution Composition] F4 --> I4[Voltage Regulation] G4 --> J4[Cleaning Process] H4 --> K4[Concentration Control] I4 --> L4[Current Density] J4 --> M4[Surface Activation] K4 --> L4 L4 --> N4[Ion Migration] M4 --> O4[Nucleation Sites] N4 --> P4[Electrodeposition] O4 --> Q4[Film Growth] P4 --> R4[Metal Deposition] Q4 --> S4[Thickness Control] R4 --> T4[Coating Formation] S4 --> U4[Quality Assessment] T4 --> V4[Adhesion Testing] U4 --> W4[Surface Analysis] V4 --> X4[Performance Evaluation] W4 --> Y4[Process Optimization] X4 --> Z4[Final Coating] Y4 --> Z4 style A4 fill:#ff6b6b,color:#fff style C4 fill:#ff6b6b,color:#fff style E4 fill:#ff6b6b,color:#fff style B4 fill:#ffd43b,color:#000 style D4 fill:#ffd43b,color:#000 style F4 fill:#ffd43b,color:#000 style G4 fill:#ffd43b,color:#000 style H4 fill:#ffd43b,color:#000 style I4 fill:#ffd43b,color:#000 style J4 fill:#ffd43b,color:#000 style K4 fill:#ffd43b,color:#000 style L4 fill:#ffd43b,color:#000 style M4 fill:#51cf66,color:#fff style N4 fill:#51cf66,color:#fff style O4 fill:#51cf66,color:#fff style P4 fill:#51cf66,color:#fff style Q4 fill:#51cf66,color:#fff style R4 fill:#51cf66,color:#fff style S4 fill:#51cf66,color:#fff style T4 fill:#51cf66,color:#fff style U4 fill:#51cf66,color:#fff style V4 fill:#51cf66,color:#fff style W4 fill:#51cf66,color:#fff style X4 fill:#51cf66,color:#fff style Y4 fill:#51cf66,color:#fff style Z4 fill:#b197fc,color:#fff
Figure 4. Electroplating process showing metal ion deposition, surface preparation, and coating quality control.
Process 5: Electrolysis
graph TD A5[Electrolyte Solution] --> B5[Electrolysis Method] C5[Electrodes] --> D5[Power Source] E5[Reaction Vessel] --> F5[Temperature Control] B5 --> G5[Solution Preparation] D5 --> H5[Voltage Application] F5 --> I5[Heat Management] G5 --> J5[Concentration Setup] H5 --> K5[Current Flow] I5 --> L5[Thermal Regulation] J5 --> M5[Ion Separation] K5 --> L5 L5 --> N5[Electrochemical Reaction] M5 --> O5[Oxidation Process] N5 --> P5[Reduction Process] O5 --> Q5[Gas Evolution] P5 --> R5[Product Formation] Q5 --> S5[Collection System] R5 --> T5[Separation Process] S5 --> U5[Gas Purification] T5 --> V5[Product Recovery] U5 --> W5[Quality Control] V5 --> X5[Yield Calculation] W5 --> Y5[Process Optimization] X5 --> Z5[Final Products] Y5 --> Z5 style A5 fill:#ff6b6b,color:#fff style C5 fill:#ff6b6b,color:#fff style E5 fill:#ff6b6b,color:#fff style B5 fill:#ffd43b,color:#000 style D5 fill:#ffd43b,color:#000 style F5 fill:#ffd43b,color:#000 style G5 fill:#ffd43b,color:#000 style H5 fill:#ffd43b,color:#000 style I5 fill:#ffd43b,color:#000 style J5 fill:#ffd43b,color:#000 style K5 fill:#ffd43b,color:#000 style L5 fill:#ffd43b,color:#000 style M5 fill:#51cf66,color:#fff style N5 fill:#51cf66,color:#fff style O5 fill:#51cf66,color:#fff style P5 fill:#51cf66,color:#fff style Q5 fill:#51cf66,color:#fff style R5 fill:#51cf66,color:#fff style S5 fill:#51cf66,color:#fff style T5 fill:#51cf66,color:#fff style U5 fill:#51cf66,color:#fff style V5 fill:#51cf66,color:#fff style W5 fill:#51cf66,color:#fff style X5 fill:#51cf66,color:#fff style Y5 fill:#51cf66,color:#fff style Z5 fill:#b197fc,color:#fff
Figure 5. Electrolysis process showing water splitting, gas evolution, and product separation.

Gary Welz

Retired Faculty Member

John Jay College, CUNY (Department of Mathematics and Computer Science)

Borough of Manhattan Community College, CUNY

CUNY Graduate Center (New Media Lab)

Email: gwelz@jjay.cuny.edu