import os from pathlib import Path import gradio as gr from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding # ====================== # Config (safe defaults) # ====================== MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini") EMBED_MODEL = os.getenv("OPENAI_EMBED_MODEL", "text-embedding-3-small") TOP_K = int(os.getenv("TOP_K", "3")) # Knowledge base file in the Space repo root (recommended) DOC_PATH = Path(os.getenv("DOC_PATH", "challenge_context.txt")) # DDS logo (raw GitHub URL) LOGO_URL = os.getenv( "LOGO_URL", "https://github.com/Decoding-Data-Science/airesidency/blob/main/dds_logo.jpg?raw=true", ) # Behavior / guardrails SYSTEM_GUARDRAILS = ( "You are Challenge Copilot. Answer ONLY using the provided context from challenge_context.txt. " "If the answer is not in the context, say: 'I don’t know based on the current document.' " "Then ask the user to add the missing official details to challenge_context.txt." ) APP_TITLE = "Building AI Application Challenge Copilot" APP_SUBTITLE = ( "Ask questions about the Building AI Application Challenge using the official content you put into " "challenge_context.txt (LlamaIndex + OpenAI)." ) # ====================== # Index build (cached) # ====================== _INDEX = None _QUERY_ENGINE = None def build_index(): """Build and cache the LlamaIndex query engine.""" global _INDEX, _QUERY_ENGINE if _QUERY_ENGINE is not None: return _QUERY_ENGINE # OpenAI key must exist in Space secrets if not os.getenv("OPENAI_API_KEY"): raise RuntimeError( "OPENAI_API_KEY is missing. Add it in the Space → Settings → Variables and secrets." ) # Create placeholder TXT if missing so Space can boot if not DOC_PATH.exists(): DOC_PATH.write_text( "Add the official Building AI Application Challenge content here.\n", encoding="utf-8", ) # LlamaIndex global settings Settings.llm = OpenAI(model=MODEL, temperature=0.2) Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL) Settings.chunk_size = 800 Settings.chunk_overlap = 120 # Reader expects a directory data_dir = str(DOC_PATH.parent) docs = SimpleDirectoryReader( input_dir=data_dir, required_exts=[".txt"], recursive=False, ).load_data() # Only index the target file docs = [d for d in docs if d.metadata.get("file_name") == DOC_PATH.name] if not docs: raise FileNotFoundError( f"Could not load {DOC_PATH.name}. Make sure it exists in the repo root (or set DOC_PATH env var)." ) _INDEX = VectorStoreIndex.from_documents(docs) _QUERY_ENGINE = _INDEX.as_query_engine(similarity_top_k=TOP_K) return _QUERY_ENGINE def format_sources(resp, max_sources=3, max_chars=240): """Format top retrieved chunks for transparency.""" lines = [] for i, sn in enumerate(getattr(resp, "source_nodes", [])[:max_sources], start=1): fn = sn.node.metadata.get("file_name", "unknown") snippet = sn.node.get_content().replace("\n", " ").strip()[:max_chars] score = getattr(sn, "score", None) score_txt = f" (score={score:.3f})" if isinstance(score, (float, int)) else "" lines.append(f"{i}. {fn}{score_txt}: {snippet}...") return "\n".join(lines) if lines else "No sources returned." def chat(message, history): """Chat handler used by Gradio ChatInterface.""" qe = build_index() prompt = ( f"{SYSTEM_GUARDRAILS}\n\n" f"User question: {message}\n" f"Answer using ONLY the context." ) resp = qe.query(prompt) answer = str(resp).strip() show_sources = os.getenv("SHOW_SOURCES", "true").lower() == "true" if show_sources: answer += "\n\n---\n**Sources:**\n" + format_sources(resp, max_sources=TOP_K) return answer # ====================== # UI (professional layout) # ====================== CSS = """ /* Global polish */ .dds-header { display:flex; align-items:center; gap:16px; } .dds-logo img { height:60px; width:auto; border-radius:10px; box-shadow: 0 2px 10px rgba(0,0,0,0.10); } .dds-title { margin:0; line-height:1.1; } .dds-subtitle { margin:6px 0 0 0; color: #555; } .dds-muted { color: #666; font-size: 0.95rem; } .dds-card { border: 1px solid rgba(0,0,0,0.08); border-radius: 14px; padding: 14px; background: rgba(255,255,255,0.7); } .dds-section-title { margin: 0 0 6px 0; } """ # Theme fallback (don’t pass theme to ChatInterface to avoid older-gradio errors) try: theme_obj = gr.themes.Soft() except Exception: theme_obj = None with gr.Blocks(theme=theme_obj, css=CSS, title=APP_TITLE) as demo: # Header row (Logo left + Title right) with gr.Row(): with gr.Column(scale=1, min_width=140): gr.HTML( f""" """ ) with gr.Column(scale=6): gr.HTML( f"""

{APP_TITLE}

{APP_SUBTITLE}

If something is missing, add official details to {DOC_PATH.name} and restart the Space.

""" ) gr.Markdown("---") # Two sections: Chat + Challenge FAQ with gr.Row(): # Section 1: Chat with gr.Column(scale=6): gr.HTML( """

Section 1 — Ask the Copilot

RAG flow: retrieve relevant chunks → generate a grounded answer using your LLM API.

""" ) # IMPORTANT: No theme= here (avoids your earlier error) gr.ChatInterface( fn=chat, examples=[ "What will I build in this live session?", "Who is this best for?", "What are the prerequisites?", "What is the RAG flow in this project?", "What should I submit (link + repo + write-up)?", ], ) # Section 2: Challenge FAQ (participant-focused) with gr.Column(scale=4): gr.HTML( """

Section 2 — Challenge FAQ

Quick guidance for participants. If something is not answered here, ask in the Copilot chat.

""" ) with gr.Accordion("FAQ 1 — What should I build for this challenge?", open=False): gr.Markdown( """ - Build a simple AI application aligned to the challenge tracks (LLM/API, no-code/low-code, sponsor tool track, etc.). - Aim for a **working demo** + **proof-of-work** you can share. - Ask in chat: *“Suggest 5 project ideas that fit the official rules in the document.”* """.strip() ) with gr.Accordion("FAQ 2 — Which track/path should I choose?", open=False): gr.Markdown( """ - Pick based on your level: - **LLM/API Integration:** Python + API + simple RAG patterns - **No-code/Low-code:** fastest to ship, less code - **Sponsor/tool track:** follow the workshop tool (if applicable) - Ask in chat: *“Given my background (X), which track is best and why?”* """.strip() ) with gr.Accordion("FAQ 3 — What is the minimum deliverable to be eligible?", open=False): gr.Markdown( """ Typical minimum: - A working **app link** that judges can open - A short description (problem + user + how to use) - Repo is optional but strongly recommended Ask in chat: *“What does the official document say about minimum submission requirements?”* """.strip() ) with gr.Accordion("FAQ 4 — How do I submit my project?", open=False): gr.Markdown( """ Common submission package: - App URL (Hugging Face Spaces / Streamlit / etc.) - Repo URL (optional but strong) - Short write-up + screenshots/video (if required) Ask in chat: *“What is the official submission format and where is the submission link?”* """.strip() ) with gr.Accordion("FAQ 5 — Where should I deploy so judges can access easily?", open=False): gr.Markdown( """ Low-friction options: - **Hugging Face Spaces (Gradio)** — easiest for demos - **Streamlit Community Cloud** - **Vercel** (for web apps) Ask in chat: *“What deployment options are recommended in the official challenge doc?”* """.strip() ) with gr.Accordion("FAQ 6 — What do judges usually look for?", open=False): gr.Markdown( """ Strong signals: - Working demo (no errors, easy to use) - Clear problem + target audience - Good AI behavior (grounded, safe, consistent) - Product thinking (UX, clarity, flow) Ask in chat: *“What are the judging criteria in the official document?”* """.strip() ) with gr.Accordion("FAQ 7 — What should I post as proof-of-work?", open=False): gr.Markdown( """ Suggested proof post structure: - 1-line problem + who it helps - Demo link + screenshot/GIF - What you learned + next improvement Ask in chat: *“Draft a proof-of-work post based on my project idea.”* """.strip() ) with gr.Accordion("FAQ 8 — How do I make my app ‘RAG grounded’ (not hallucinating)?", open=False): gr.Markdown( """ Best practices: - Restrict answers to retrieved context - Show sources/snippets (optional but strong) - If missing info → say “Not in document” and request adding content Ask in chat: *“Answer using only the document; if missing, tell me what section to add.”* """.strip() ) with gr.Accordion("FAQ 9 — I can’t find a detail (dates/rules/prizes). What now?", open=False): gr.Markdown( f""" - The Copilot can only answer what exists inside **{DOC_PATH.name}**. - If the official detail isn’t in the TXT, add it, commit, and restart the Space. Ask in chat: *“What exact section should I add to cover [missing detail]?”* """.strip() ) gr.Markdown("---") gr.Markdown( f""" **Admin notes** - Context file: `{DOC_PATH.name}` - Optional env vars: `OPENAI_MODEL`, `OPENAI_EMBED_MODEL`, `TOP_K`, `SHOW_SOURCES`, `DOC_PATH`, `LOGO_URL` """.strip() ) if __name__ == "__main__": demo.launch()