|
|
import os |
|
|
from pathlib import Path |
|
|
import gradio as gr |
|
|
|
|
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings |
|
|
from llama_index.llms.openai import OpenAI |
|
|
from llama_index.embeddings.openai import OpenAIEmbedding |
|
|
|
|
|
MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini") |
|
|
EMBED_MODEL = os.getenv("OPENAI_EMBED_MODEL", "text-embedding-3-small") |
|
|
TOP_K = int(os.getenv("TOP_K", "3")) |
|
|
|
|
|
DOC_PATH = Path(os.getenv("DOC_PATH", "challenge_context.txt")) |
|
|
|
|
|
SYSTEM_GUARDRAILS = ( |
|
|
"You are Challenge Copilot. Answer ONLY using the provided context. " |
|
|
"If the answer is not in the context, say: 'I don’t know based on the current document.' " |
|
|
"Then ask the user to add the missing official details to challenge_context.txt." |
|
|
) |
|
|
|
|
|
_INDEX = None |
|
|
_QUERY_ENGINE = None |
|
|
|
|
|
def build_index(): |
|
|
global _INDEX, _QUERY_ENGINE |
|
|
if _QUERY_ENGINE is not None: |
|
|
return _QUERY_ENGINE |
|
|
|
|
|
if not os.getenv("OPENAI_API_KEY"): |
|
|
raise RuntimeError( |
|
|
"OPENAI_API_KEY is missing. Add it in the Space Settings → Variables and secrets." |
|
|
) |
|
|
|
|
|
if not DOC_PATH.exists(): |
|
|
DOC_PATH.write_text( |
|
|
"Add the official Building AI Application Challenge content here.\n", |
|
|
encoding="utf-8", |
|
|
) |
|
|
|
|
|
Settings.llm = OpenAI(model=MODEL, temperature=0.2) |
|
|
Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL) |
|
|
Settings.chunk_size = 800 |
|
|
Settings.chunk_overlap = 120 |
|
|
|
|
|
data_dir = str(DOC_PATH.parent) |
|
|
docs = SimpleDirectoryReader( |
|
|
input_dir=data_dir, |
|
|
required_exts=[".txt"], |
|
|
recursive=False |
|
|
).load_data() |
|
|
|
|
|
docs = [d for d in docs if d.metadata.get("file_name") == DOC_PATH.name] |
|
|
if not docs: |
|
|
raise FileNotFoundError(f"Could not load {DOC_PATH.name}. Make sure it exists in the repo.") |
|
|
|
|
|
_INDEX = VectorStoreIndex.from_documents(docs) |
|
|
_QUERY_ENGINE = _INDEX.as_query_engine(similarity_top_k=TOP_K) |
|
|
return _QUERY_ENGINE |
|
|
|
|
|
def format_sources(resp, max_sources=3, max_chars=220): |
|
|
lines = [] |
|
|
for i, sn in enumerate(getattr(resp, "source_nodes", [])[:max_sources], start=1): |
|
|
fn = sn.node.metadata.get("file_name", "unknown") |
|
|
snippet = sn.node.get_content().replace("\n", " ").strip()[:max_chars] |
|
|
score = getattr(sn, "score", None) |
|
|
score_txt = f" (score={score:.3f})" if isinstance(score, (float, int)) else "" |
|
|
lines.append(f"{i}. {fn}{score_txt}: {snippet}...") |
|
|
return "\n".join(lines) if lines else "No sources returned." |
|
|
|
|
|
def chat(message, history): |
|
|
qe = build_index() |
|
|
prompt = ( |
|
|
f"{SYSTEM_GUARDRAILS}\n\n" |
|
|
f"User question: {message}\n" |
|
|
f"Answer using ONLY the context." |
|
|
) |
|
|
resp = qe.query(prompt) |
|
|
answer = str(resp).strip() |
|
|
|
|
|
show_sources = os.getenv("SHOW_SOURCES", "true").lower() == "true" |
|
|
if show_sources: |
|
|
answer += "\n\n---\nSources:\n" + format_sources(resp, max_sources=TOP_K) |
|
|
|
|
|
return answer |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
theme_obj = gr.themes.Soft() |
|
|
except Exception: |
|
|
theme_obj = None |
|
|
|
|
|
with gr.Blocks(theme=theme_obj) as demo: |
|
|
gr.Markdown("# Challenge Copilot — RAG Q&A Bot") |
|
|
gr.Markdown("Ask questions about the Building AI Application Challenge using challenge_context.txt (LlamaIndex + OpenAI).") |
|
|
gr.ChatInterface( |
|
|
fn=chat, |
|
|
examples=[ |
|
|
"What will I build in this live session?", |
|
|
"Who is this best for?", |
|
|
"What are the prerequisites?" |
|
|
], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|