File size: 11,544 Bytes
77c2f68 00bebe2 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 b03b85b 77c2f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
from pathlib import Path
import gradio as gr
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
# ======================
# Config (safe defaults)
# ======================
MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
EMBED_MODEL = os.getenv("OPENAI_EMBED_MODEL", "text-embedding-3-small")
TOP_K = int(os.getenv("TOP_K", "3"))
# Knowledge base file in the Space repo root (recommended)
DOC_PATH = Path(os.getenv("DOC_PATH", "challenge_context.txt"))
# DDS logo (raw GitHub URL)
LOGO_URL = os.getenv(
"LOGO_URL",
"https://github.com/Decoding-Data-Science/airesidency/blob/main/dds_logo.jpg?raw=true",
)
# Behavior / guardrails
SYSTEM_GUARDRAILS = (
"You are Challenge Copilot. Answer ONLY using the provided context from challenge_context.txt. "
"If the answer is not in the context, say: 'I don’t know based on the current document.' "
"Then ask the user to add the missing official details to challenge_context.txt."
)
APP_TITLE = "Building AI Application Challenge Copilot"
APP_SUBTITLE = (
"Ask questions about the Building AI Application Challenge using the official content you put into "
"challenge_context.txt (LlamaIndex + OpenAI)."
)
# ======================
# Index build (cached)
# ======================
_INDEX = None
_QUERY_ENGINE = None
def build_index():
"""Build and cache the LlamaIndex query engine."""
global _INDEX, _QUERY_ENGINE
if _QUERY_ENGINE is not None:
return _QUERY_ENGINE
# OpenAI key must exist in Space secrets
if not os.getenv("OPENAI_API_KEY"):
raise RuntimeError(
"OPENAI_API_KEY is missing. Add it in the Space → Settings → Variables and secrets."
)
# Create placeholder TXT if missing so Space can boot
if not DOC_PATH.exists():
DOC_PATH.write_text(
"Add the official Building AI Application Challenge content here.\n",
encoding="utf-8",
)
# LlamaIndex global settings
Settings.llm = OpenAI(model=MODEL, temperature=0.2)
Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL)
Settings.chunk_size = 800
Settings.chunk_overlap = 120
# Reader expects a directory
data_dir = str(DOC_PATH.parent)
docs = SimpleDirectoryReader(
input_dir=data_dir,
required_exts=[".txt"],
recursive=False,
).load_data()
# Only index the target file
docs = [d for d in docs if d.metadata.get("file_name") == DOC_PATH.name]
if not docs:
raise FileNotFoundError(
f"Could not load {DOC_PATH.name}. Make sure it exists in the repo root (or set DOC_PATH env var)."
)
_INDEX = VectorStoreIndex.from_documents(docs)
_QUERY_ENGINE = _INDEX.as_query_engine(similarity_top_k=TOP_K)
return _QUERY_ENGINE
def format_sources(resp, max_sources=3, max_chars=240):
"""Format top retrieved chunks for transparency."""
lines = []
for i, sn in enumerate(getattr(resp, "source_nodes", [])[:max_sources], start=1):
fn = sn.node.metadata.get("file_name", "unknown")
snippet = sn.node.get_content().replace("\n", " ").strip()[:max_chars]
score = getattr(sn, "score", None)
score_txt = f" (score={score:.3f})" if isinstance(score, (float, int)) else ""
lines.append(f"{i}. {fn}{score_txt}: {snippet}...")
return "\n".join(lines) if lines else "No sources returned."
def chat(message, history):
"""Chat handler used by Gradio ChatInterface."""
qe = build_index()
prompt = (
f"{SYSTEM_GUARDRAILS}\n\n"
f"User question: {message}\n"
f"Answer using ONLY the context."
)
resp = qe.query(prompt)
answer = str(resp).strip()
show_sources = os.getenv("SHOW_SOURCES", "true").lower() == "true"
if show_sources:
answer += "\n\n---\n**Sources:**\n" + format_sources(resp, max_sources=TOP_K)
return answer
# ======================
# UI (professional layout)
# ======================
CSS = """
/* Global polish */
.dds-header { display:flex; align-items:center; gap:16px; }
.dds-logo img { height:60px; width:auto; border-radius:10px; box-shadow: 0 2px 10px rgba(0,0,0,0.10); }
.dds-title { margin:0; line-height:1.1; }
.dds-subtitle { margin:6px 0 0 0; color: #555; }
.dds-muted { color: #666; font-size: 0.95rem; }
.dds-card { border: 1px solid rgba(0,0,0,0.08); border-radius: 14px; padding: 14px; background: rgba(255,255,255,0.7); }
.dds-section-title { margin: 0 0 6px 0; }
"""
# Theme fallback (don’t pass theme to ChatInterface to avoid older-gradio errors)
try:
theme_obj = gr.themes.Soft()
except Exception:
theme_obj = None
with gr.Blocks(theme=theme_obj, css=CSS, title=APP_TITLE) as demo:
# Header row (Logo left + Title right)
with gr.Row():
with gr.Column(scale=1, min_width=140):
gr.HTML(
f"""
<div class="dds-logo">
<img src="{LOGO_URL}" alt="DDS Logo"/>
</div>
"""
)
with gr.Column(scale=6):
gr.HTML(
f"""
<div class="dds-header">
<div>
<h2 class="dds-title">{APP_TITLE}</h2>
<p class="dds-subtitle">{APP_SUBTITLE}</p>
<p class="dds-muted">
If something is missing, add official details to <b>{DOC_PATH.name}</b> and restart the Space.
</p>
</div>
</div>
"""
)
gr.Markdown("---")
# Two sections: Chat + Challenge FAQ
with gr.Row():
# Section 1: Chat
with gr.Column(scale=6):
gr.HTML(
"""
<div class="dds-card">
<h3 class="dds-section-title">Section 1 — Ask the Copilot</h3>
<p class="dds-muted">RAG flow: retrieve relevant chunks → generate a grounded answer using your LLM API.</p>
</div>
"""
)
# IMPORTANT: No theme= here (avoids your earlier error)
gr.ChatInterface(
fn=chat,
examples=[
"What will I build in this live session?",
"Who is this best for?",
"What are the prerequisites?",
"What is the RAG flow in this project?",
"What should I submit (link + repo + write-up)?",
],
)
# Section 2: Challenge FAQ (participant-focused)
with gr.Column(scale=4):
gr.HTML(
"""
<div class="dds-card">
<h3 class="dds-section-title">Section 2 — Challenge FAQ</h3>
<p class="dds-muted">
Quick guidance for participants. If something is not answered here, ask in the Copilot chat.
</p>
</div>
"""
)
with gr.Accordion("FAQ 1 — What should I build for this challenge?", open=False):
gr.Markdown(
"""
- Build a simple AI application aligned to the challenge tracks (LLM/API, no-code/low-code, sponsor tool track, etc.).
- Aim for a **working demo** + **proof-of-work** you can share.
- Ask in chat: *“Suggest 5 project ideas that fit the official rules in the document.”*
""".strip()
)
with gr.Accordion("FAQ 2 — Which track/path should I choose?", open=False):
gr.Markdown(
"""
- Pick based on your level:
- **LLM/API Integration:** Python + API + simple RAG patterns
- **No-code/Low-code:** fastest to ship, less code
- **Sponsor/tool track:** follow the workshop tool (if applicable)
- Ask in chat: *“Given my background (X), which track is best and why?”*
""".strip()
)
with gr.Accordion("FAQ 3 — What is the minimum deliverable to be eligible?", open=False):
gr.Markdown(
"""
Typical minimum:
- A working **app link** that judges can open
- A short description (problem + user + how to use)
- Repo is optional but strongly recommended
Ask in chat: *“What does the official document say about minimum submission requirements?”*
""".strip()
)
with gr.Accordion("FAQ 4 — How do I submit my project?", open=False):
gr.Markdown(
"""
Common submission package:
- App URL (Hugging Face Spaces / Streamlit / etc.)
- Repo URL (optional but strong)
- Short write-up + screenshots/video (if required)
Ask in chat: *“What is the official submission format and where is the submission link?”*
""".strip()
)
with gr.Accordion("FAQ 5 — Where should I deploy so judges can access easily?", open=False):
gr.Markdown(
"""
Low-friction options:
- **Hugging Face Spaces (Gradio)** — easiest for demos
- **Streamlit Community Cloud**
- **Vercel** (for web apps)
Ask in chat: *“What deployment options are recommended in the official challenge doc?”*
""".strip()
)
with gr.Accordion("FAQ 6 — What do judges usually look for?", open=False):
gr.Markdown(
"""
Strong signals:
- Working demo (no errors, easy to use)
- Clear problem + target audience
- Good AI behavior (grounded, safe, consistent)
- Product thinking (UX, clarity, flow)
Ask in chat: *“What are the judging criteria in the official document?”*
""".strip()
)
with gr.Accordion("FAQ 7 — What should I post as proof-of-work?", open=False):
gr.Markdown(
"""
Suggested proof post structure:
- 1-line problem + who it helps
- Demo link + screenshot/GIF
- What you learned + next improvement
Ask in chat: *“Draft a proof-of-work post based on my project idea.”*
""".strip()
)
with gr.Accordion("FAQ 8 — How do I make my app ‘RAG grounded’ (not hallucinating)?", open=False):
gr.Markdown(
"""
Best practices:
- Restrict answers to retrieved context
- Show sources/snippets (optional but strong)
- If missing info → say “Not in document” and request adding content
Ask in chat: *“Answer using only the document; if missing, tell me what section to add.”*
""".strip()
)
with gr.Accordion("FAQ 9 — I can’t find a detail (dates/rules/prizes). What now?", open=False):
gr.Markdown(
f"""
- The Copilot can only answer what exists inside **{DOC_PATH.name}**.
- If the official detail isn’t in the TXT, add it, commit, and restart the Space.
Ask in chat: *“What exact section should I add to cover [missing detail]?”*
""".strip()
)
gr.Markdown("---")
gr.Markdown(
f"""
**Admin notes**
- Context file: `{DOC_PATH.name}`
- Optional env vars: `OPENAI_MODEL`, `OPENAI_EMBED_MODEL`, `TOP_K`, `SHOW_SOURCES`, `DOC_PATH`, `LOGO_URL`
""".strip()
)
if __name__ == "__main__":
demo.launch()
|