|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CodeBLEU metric.""" |
|
|
|
|
|
import evaluate |
|
|
import datasets |
|
|
|
|
|
|
|
|
from .bleu import corpus_bleu |
|
|
from .utils import pad_sequence |
|
|
from .weighted_ngram_match import ngrams |
|
|
from .syntax_match import calc_syntax_match |
|
|
from .parser_DFG import DFG_python |
|
|
from .parser_utils import tree_to_token_index |
|
|
from .dataflow_match import calc_dataflow_match |
|
|
|
|
|
from .my_codebleu import calc_codebleu |
|
|
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
|
@InProceedings{huggingface:module, |
|
|
title = {CodeBLEU: A Metric for Evaluating Code Generation}, |
|
|
authors={Sedykh, Ivan}, |
|
|
year={2022} |
|
|
} |
|
|
""" |
|
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
This new module is an adaptation of the original CodeBLEU metric from CodexGLUE benchmark |
|
|
for evaluating code generation. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
|
Calculates how good are predictions given some references, using certain scores |
|
|
Args: |
|
|
predictions: list of predictions to score. Each predictions |
|
|
should be a string with tokens separated by spaces. |
|
|
references: list of lists of references. Each list |
|
|
should contain len(predictions) items. |
|
|
lang: programming language in ['java','js','c_sharp','php','go','python','ruby'] |
|
|
tokenizer: tokenizer function str -> List[str], Defaults to lambda s: s.split() |
|
|
params: str, weights for averaging(see CodeBLEU paper). |
|
|
Defaults to equal weights "0.25,0.25,0.25,0.25". |
|
|
Returns: |
|
|
CodeBLEU: resulting score, |
|
|
ngram_match_score: See paper CodeBLEU, |
|
|
weighted_ngram_match_score: See paper CodeBLEU, |
|
|
syntax_match_score: See paper CodeBLEU, |
|
|
dataflow_match_score: See paper CodeBLEU, |
|
|
Examples: |
|
|
|
|
|
>>> codebleu = evaluate.load("my_new_module") |
|
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
|
>>> print(results) |
|
|
{'accuracy': 1.0} |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
|
class codebleu(evaluate.Metric): |
|
|
"""CodeBLEU metric from CodexGLUE""" |
|
|
|
|
|
def _info(self): |
|
|
return evaluate.MetricInfo( |
|
|
description=_DESCRIPTION, |
|
|
citation=_CITATION, |
|
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
features=[ |
|
|
datasets.Features( |
|
|
{ |
|
|
"predictions": datasets.Value("string", id="sequence"), |
|
|
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), |
|
|
} |
|
|
), |
|
|
datasets.Features( |
|
|
{ |
|
|
"predictions": datasets.Value("string", id="sequence"), |
|
|
"references": datasets.Value("string", id="sequence"), |
|
|
} |
|
|
), |
|
|
], |
|
|
reference_urls=[ |
|
|
"https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator", |
|
|
"https://arxiv.org/abs/2009.10297", |
|
|
], |
|
|
) |
|
|
|
|
|
def _download_and_prepare(self, dl_manager): |
|
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
|
|
|
|
|
|
|
|
self.kw_dir = dl_manager.download_and_extract("https://huggingface.co/spaces/dvitel/codebleu/resolve/main/keywords.tar.gz") |
|
|
print("Downloaded keywords to", self.kw_dir) |
|
|
self.langso_dir = dl_manager.download("https://huggingface.co/spaces/dvitel/codebleu/resolve/main/my-languages.so") |
|
|
print("Downloaded languages.so to", self.langso_dir) |
|
|
|
|
|
def _compute(self, predictions, references, lang = "python", tokenizer=None, params="0.25,0.25,0.25,0.25"): |
|
|
"""Returns the scores""" |
|
|
res = calc_codebleu( |
|
|
predictions=predictions, |
|
|
references=references, |
|
|
lang=lang, |
|
|
tokenizer=tokenizer, |
|
|
params=params, |
|
|
kw_dir = self.kw_dir, |
|
|
langso_dir = self.langso_dir |
|
|
) |
|
|
return res |
|
|
|