Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,55 +1,75 @@
|
|
| 1 |
-
import os
|
| 2 |
import io
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 7 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
from pydantic import BaseModel
|
| 9 |
-
from
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
app.add_middleware(
|
| 21 |
-
CORSMiddleware,
|
| 22 |
-
allow_origins=["*"], # you can tighten this later if needed
|
| 23 |
-
allow_credentials=True,
|
| 24 |
-
allow_methods=["*"],
|
| 25 |
-
allow_headers=["*"],
|
| 26 |
-
)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
if ROBOFLOW_API_KEY is None:
|
| 33 |
-
logger.error("β ROBOFLOW_API_KEY not found in environment variables")
|
| 34 |
-
model = None
|
| 35 |
-
else:
|
| 36 |
-
try:
|
| 37 |
-
logger.info("π Loading Roboflow model...")
|
| 38 |
-
model = get_model(model_id=MODEL_ID, api_key=ROBOFLOW_API_KEY)
|
| 39 |
-
logger.info("β
Roboflow model loaded successfully")
|
| 40 |
-
except Exception as e:
|
| 41 |
-
logger.exception("β Failed to load Roboflow model")
|
| 42 |
-
model = None
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# Response model
|
| 46 |
class PredictionResponse(BaseModel):
|
| 47 |
label: str
|
| 48 |
confidence: float
|
| 49 |
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
@app.post("/predict", response_model=PredictionResponse)
|
| 52 |
async def predict(file: UploadFile = File(...)):
|
|
|
|
| 53 |
if model is None:
|
| 54 |
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 55 |
|
|
@@ -57,30 +77,31 @@ async def predict(file: UploadFile = File(...)):
|
|
| 57 |
raise HTTPException(status_code=400, detail="File must be an image")
|
| 58 |
|
| 59 |
try:
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Roboflow accepts PIL Image directly
|
| 63 |
-
img = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 64 |
|
| 65 |
-
|
| 66 |
-
result = model.infer(img)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
label = pred.get("class", "Unknown")
|
| 74 |
-
confidence = float(pred.get("confidence", 0.0))
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
-
|
| 81 |
-
raise HTTPException(status_code=500, detail="Prediction failed")
|
| 82 |
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
@app.get("/health")
|
| 85 |
-
def
|
| 86 |
-
return {"status": "
|
|
|
|
|
|
|
| 1 |
import io
|
| 2 |
+
import torch
|
| 3 |
+
import timm
|
| 4 |
+
from PIL import Image
|
| 5 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
|
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
+
from torchvision import transforms
|
| 8 |
|
| 9 |
+
# =========================
|
| 10 |
+
# App Init
|
| 11 |
+
# =========================
|
| 12 |
+
app = FastAPI(title="Vehicle Type Classifier API")
|
| 13 |
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
print("Using device:", device)
|
| 16 |
|
| 17 |
+
MODEL_PATH = "vehicle_classifier_best.pth"
|
| 18 |
+
model = None
|
| 19 |
+
class_names = None
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# =========================
|
| 23 |
+
# Response Schema
|
| 24 |
+
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
class PredictionResponse(BaseModel):
|
| 26 |
label: str
|
| 27 |
confidence: float
|
| 28 |
|
| 29 |
|
| 30 |
+
# =========================
|
| 31 |
+
# Image Transform
|
| 32 |
+
# =========================
|
| 33 |
+
transform = transforms.Compose([
|
| 34 |
+
transforms.Resize((224, 224)),
|
| 35 |
+
transforms.ToTensor(),
|
| 36 |
+
transforms.Normalize(
|
| 37 |
+
mean=[0.485, 0.456, 0.406],
|
| 38 |
+
std=[0.229, 0.224, 0.225]
|
| 39 |
+
)
|
| 40 |
+
])
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# =========================
|
| 44 |
+
# Load Model on Startup
|
| 45 |
+
# =========================
|
| 46 |
+
@app.on_event("startup")
|
| 47 |
+
def load_model():
|
| 48 |
+
global model, class_names
|
| 49 |
+
|
| 50 |
+
checkpoint = torch.load(MODEL_PATH, map_location=device)
|
| 51 |
+
class_names = checkpoint["class_names"]
|
| 52 |
+
num_classes = len(class_names)
|
| 53 |
+
|
| 54 |
+
model = timm.create_model(
|
| 55 |
+
"convnext_tiny",
|
| 56 |
+
pretrained=False,
|
| 57 |
+
num_classes=num_classes
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
| 61 |
+
model.to(device)
|
| 62 |
+
model.eval()
|
| 63 |
+
|
| 64 |
+
print("β
Model loaded successfully")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# =========================
|
| 68 |
+
# Prediction Endpoint
|
| 69 |
+
# =========================
|
| 70 |
@app.post("/predict", response_model=PredictionResponse)
|
| 71 |
async def predict(file: UploadFile = File(...)):
|
| 72 |
+
|
| 73 |
if model is None:
|
| 74 |
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 75 |
|
|
|
|
| 77 |
raise HTTPException(status_code=400, detail="File must be an image")
|
| 78 |
|
| 79 |
try:
|
| 80 |
+
image_bytes = await file.read()
|
| 81 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
img_tensor = transform(image).unsqueeze(0).to(device)
|
|
|
|
| 84 |
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(img_tensor)
|
| 87 |
+
probs = torch.softmax(outputs, dim=1)
|
| 88 |
+
pred_idx = torch.argmax(probs, dim=1).item()
|
| 89 |
|
| 90 |
+
label = class_names[pred_idx]
|
| 91 |
+
confidence = probs[0][pred_idx].item()
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
return PredictionResponse(
|
| 94 |
+
label=label,
|
| 95 |
+
confidence=round(confidence, 4)
|
| 96 |
+
)
|
| 97 |
|
| 98 |
except Exception as e:
|
| 99 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
+
# =========================
|
| 103 |
+
# Health Check
|
| 104 |
+
# =========================
|
| 105 |
@app.get("/health")
|
| 106 |
+
def root():
|
| 107 |
+
return {"status": "Vehicle Classifier API is running πποΈ"}
|