import gradio as gr import os from io import BytesIO from PIL import Image, ImageDraw, ImageFont from PIL import ImageColor import json import google.generativeai as genai from google.generativeai import types from dotenv import load_dotenv # 1. SETUP API KEY # ---------------- load_dotenv() api_key = os.getenv("Gemini_API_Key") # Configure the Google AI library genai.configure(api_key=api_key) # 2. DEFINE MODEL AND INSTRUCTIONS bounding_box_system_instructions = """ Return bounding boxes as a JSON array with labels. Never return masks or code fencing. Limit to 25 objects. If an object is present multiple times, name them according to their unique characteristic (colors, size, position, unique characteristics, etc..). """ model = genai.GenerativeModel( model_name='gemini-2.5-flash', system_instruction=bounding_box_system_instructions , safety_settings=[ types.SafetySettingDict( category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="BLOCK_ONLY_HIGH", ) ],) generation_config = genai.types.GenerationConfig( temperature=0.5, ) def generate_bounding_boxes(prompt, image): image = image.resize((1024, int(1024 * image.height / image.width))) response = model.generate_content([prompt, image], generation_config=generation_config) bounding_boxes = parse_json(response.text) img=plot_bounding_boxes(image, bounding_boxes) return img def parse_json(json_output): lines = json_output.splitlines() for i, line in enumerate(lines): if line == "```json": json_output = "\n".join(lines[i+1:]) # Remove everything before "```json" json_output = json_output.split("```")[0] # Remove everything after the closing "```" break return json_output def plot_bounding_boxes(im, bounding_boxes): """ Plots bounding boxes on an image with labels. """ additional_colors = [colorname for (colorname, colorcode) in ImageColor.colormap.items()] im = im.copy() width, height = im.size draw = ImageDraw.Draw(im) colors = [ 'red', 'green', 'blue', 'yellow', 'orange', 'pink', 'purple', 'cyan', 'lime', 'magenta', 'violet', 'gold', 'silver' ] + additional_colors try: # Use a default font if NotoSansCJK is not available try: font = ImageFont.load_default() except OSError: print("NotoSansCJK-Regular.ttc not found. Using default font.") font = ImageFont.load_default() bounding_boxes_json = json.loads(bounding_boxes) for i, bounding_box in enumerate(bounding_boxes_json): color = colors[i % len(colors)] abs_y1 = int(bounding_box["box_2d"][0] / 1000 * height) abs_x1 = int(bounding_box["box_2d"][1] / 1000 * width) abs_y2 = int(bounding_box["box_2d"][2] / 1000 * height) abs_x2 = int(bounding_box["box_2d"][3] / 1000 * width) if abs_x1 > abs_x2: abs_x1, abs_x2 = abs_x2, abs_x1 if abs_y1 > abs_y2: abs_y1, abs_y2 = abs_y2, abs_y1 # Draw bounding box and label draw.rectangle(((abs_x1, abs_y1), (abs_x2, abs_y2)), outline=color, width=4) if "label" in bounding_box: draw.text((abs_x1 + 8, abs_y1 + 6), bounding_box["label"], fill=color, font=font) except Exception as e: print(f"Error drawing bounding boxes: {e}") return im def gradio_interface(): """ Gradio app interface for bounding box generation with example pairs. """ # Example image + prompt pairs examples = [ ["cookies.jpg", "Detect the cookies and label their types."], ["messed_room.jpg", "Find the unorganized item and suggest action in label in the image to fix them."], ["yoga.jpg", "Show the different yoga poses and name them."], ["zoom_face.png", "Label the tired faces in the image."] ] with gr.Blocks(gr.themes.Glass(secondary_hue= "rose")) as demo: gr.Markdown("# Gemini Bounding Box Generator") with gr.Row(): with gr.Column(): gr.Markdown("### Input Section") input_image = gr.Image(type="pil", label="Input Image") input_prompt = gr.Textbox(lines=2, label="Input Prompt", placeholder="Describe what to detect.") submit_btn = gr.Button("Generate") with gr.Column(): gr.Markdown("### Output Section") output_image = gr.Image(type="pil", label="Output Image") #output_json = gr.Textbox(label="Bounding Boxes JSON") gr.Markdown("### Examples") gr.Examples( examples=examples, inputs=[input_image, input_prompt], label="Example Images with Prompts" ) # Event to generate bounding boxes submit_btn.click( generate_bounding_boxes, inputs=[input_prompt, input_image], outputs=[output_image] ) return demo if __name__ == "__main__": app = gradio_interface() app.launch()