Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,70 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import subprocess
|
|
|
|
| 4 |
|
| 5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
data = {
|
| 7 |
-
"Reference": [
|
|
|
|
|
|
|
|
|
|
| 8 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
| 9 |
-
"Scope": [
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
| 13 |
}
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
| 17 |
-
st.write("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape.")
|
| 18 |
-
|
| 19 |
-
# Display the table
|
| 20 |
df = pd.DataFrame(data)
|
| 21 |
-
st.write(df)
|
| 22 |
|
| 23 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
mermaid_code = '''
|
| 25 |
graph TD;
|
| 26 |
A[LLMs in Security] --> B[Security Application]
|
|
@@ -30,48 +74,170 @@ graph TD;
|
|
| 30 |
E --> F[Data]
|
| 31 |
'''
|
| 32 |
|
| 33 |
-
|
| 34 |
-
st.markdown(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
st.markdown("""
|
| 38 |
<style>
|
| 39 |
.scrollable-content {
|
| 40 |
-
height:
|
| 41 |
overflow-y: scroll;
|
|
|
|
|
|
|
| 42 |
}
|
| 43 |
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
<div class="scrollable-content">
|
| 45 |
-
<
|
| 46 |
<ul>
|
| 47 |
-
<li>2022-2023
|
| 48 |
-
<li>2020-2024
|
| 49 |
-
<li>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
</div>
|
| 52 |
""", unsafe_allow_html=True)
|
| 53 |
|
| 54 |
-
#
|
|
|
|
|
|
|
|
|
|
| 55 |
st.subheader("π Run Python Dependency Security Audit")
|
| 56 |
|
| 57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
if st.button('Run pip-audit for Security Check'):
|
| 59 |
with st.spinner('Running security audit...'):
|
|
|
|
|
|
|
|
|
|
| 60 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
|
|
|
| 61 |
st.code(result.stdout)
|
|
|
|
| 62 |
|
| 63 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
st.markdown("""
|
| 66 |
-
-
|
| 67 |
-
-
|
| 68 |
-
-
|
|
|
|
|
|
|
| 69 |
""")
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
st.
|
| 73 |
-
|
| 74 |
-
- **Azure Container Apps**: Easily deploy and scale your app with Azure Container Apps.
|
| 75 |
-
- **Azure Container Registry**: Store and manage container images.
|
| 76 |
-
- **Cosmos DB**: Use Cosmos DB to store security audit results and logs.
|
| 77 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import subprocess
|
| 4 |
+
import time
|
| 5 |
|
| 6 |
+
# ---------------------------- Header and Introduction ----------------------------
|
| 7 |
+
|
| 8 |
+
# Set the page configuration
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title="LLMs for Cyber Security",
|
| 11 |
+
page_icon="π",
|
| 12 |
+
layout="wide",
|
| 13 |
+
initial_sidebar_state="expanded",
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Title of the application
|
| 17 |
+
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
| 18 |
+
|
| 19 |
+
# Introduction text with link to the paper
|
| 20 |
+
st.markdown("""
|
| 21 |
+
This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3).
|
| 22 |
+
It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.
|
| 23 |
+
""")
|
| 24 |
+
|
| 25 |
+
# ---------------------------- Data Preparation ----------------------------
|
| 26 |
+
|
| 27 |
+
# Create the data dictionary
|
| 28 |
data = {
|
| 29 |
+
"Reference": [
|
| 30 |
+
"Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.",
|
| 31 |
+
"Coelho et al.", "Novelli et al.", "LLM4Security"
|
| 32 |
+
],
|
| 33 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
| 34 |
+
"Scope": [
|
| 35 |
+
"Security application", "Security application", "Security application, Security of LLM",
|
| 36 |
+
"Security application, Security of LLM", "Security application",
|
| 37 |
+
"Security application", "Security application"
|
| 38 |
+
],
|
| 39 |
+
"Dimensions": [
|
| 40 |
+
"Task", "Task", "Model, Task", "Task", "Task, Domain specific technique",
|
| 41 |
+
"Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"
|
| 42 |
+
],
|
| 43 |
+
"Time frame": [
|
| 44 |
+
"2022-2023", "2020-2024", "2019-2024", "2020-2024",
|
| 45 |
+
"2021-2023", "2020-2024", "2020-2024"
|
| 46 |
+
],
|
| 47 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
| 48 |
}
|
| 49 |
|
| 50 |
+
# Convert the data dictionary into a pandas DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
df = pd.DataFrame(data)
|
|
|
|
| 52 |
|
| 53 |
+
# ---------------------------- Display Data Table ----------------------------
|
| 54 |
+
|
| 55 |
+
st.subheader("π Survey Overview Table")
|
| 56 |
+
|
| 57 |
+
# Display the DataFrame as an interactive table
|
| 58 |
+
st.dataframe(df, height=300)
|
| 59 |
+
|
| 60 |
+
# Add some spacing
|
| 61 |
+
st.markdown("---")
|
| 62 |
+
|
| 63 |
+
# ---------------------------- Mermaid Diagram Visualization ----------------------------
|
| 64 |
+
|
| 65 |
+
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
|
| 66 |
+
|
| 67 |
+
# Define the Mermaid code
|
| 68 |
mermaid_code = '''
|
| 69 |
graph TD;
|
| 70 |
A[LLMs in Security] --> B[Security Application]
|
|
|
|
| 74 |
E --> F[Data]
|
| 75 |
'''
|
| 76 |
|
| 77 |
+
# Display the Mermaid diagram using markdown
|
| 78 |
+
st.markdown(f"""
|
| 79 |
+
```mermaid
|
| 80 |
+
{mermaid_code}
|
| 81 |
+
```
|
| 82 |
+
""")
|
| 83 |
+
|
| 84 |
+
# Explanation of the diagram
|
| 85 |
+
st.markdown("""
|
| 86 |
+
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
|
| 87 |
+
""")
|
| 88 |
|
| 89 |
+
# Add some spacing
|
| 90 |
+
st.markdown("---")
|
| 91 |
+
|
| 92 |
+
# ---------------------------- Scrollable Content for Additional Insights ----------------------------
|
| 93 |
+
st.subheader("π Additional Insights")
|
| 94 |
+
|
| 95 |
+
# Custom CSS for scrollable content
|
| 96 |
st.markdown("""
|
| 97 |
<style>
|
| 98 |
.scrollable-content {
|
| 99 |
+
height: 250px;
|
| 100 |
overflow-y: scroll;
|
| 101 |
+
padding: 10px;
|
| 102 |
+
border: 1px solid #ccc;
|
| 103 |
}
|
| 104 |
</style>
|
| 105 |
+
""", unsafe_allow_html=True)
|
| 106 |
+
|
| 107 |
+
# Scrollable content with insights
|
| 108 |
+
st.markdown("""
|
| 109 |
<div class="scrollable-content">
|
| 110 |
+
<h4>Survey Highlights:</h4>
|
| 111 |
<ul>
|
| 112 |
+
<li><strong>Motlagh et al. (2024)</strong>: Focused on security applications within 2022-2023 but did not specify the number of papers reviewed.</li>
|
| 113 |
+
<li><strong>Divakaran et al. (2024)</strong>: Explored security applications from 2020-2024 without specifying the number of papers.</li>
|
| 114 |
+
<li><strong>Yao et al. (2023)</strong>: Reviewed 281 papers covering both security applications and the security of LLMs between 2019-2024.</li>
|
| 115 |
+
<li><strong>Yigit et al. (2024)</strong>: Concentrated on security applications and the security of LLMs from 2020-2024 without specifying paper count.</li>
|
| 116 |
+
<li><strong>Coelho et al. (2024)</strong>: Introduced domain-specific techniques in security applications, covering 19 papers from 2021-2023.</li>
|
| 117 |
+
<li><strong>Novelli et al. (2024)</strong>: Discussed tasks, models, and domain-specific techniques in security applications without specifying paper count.</li>
|
| 118 |
+
<li><strong>LLM4Security (2024)</strong>: Comprehensive survey of 127 papers from 2020-2024, covering models, tasks, domain-specific techniques, and data.</li>
|
| 119 |
</ul>
|
| 120 |
+
<h4>Key Observations:</h4>
|
| 121 |
+
<ol>
|
| 122 |
+
<li>The interest in applying LLMs to cybersecurity has significantly increased since 2019.</li>
|
| 123 |
+
<li>There's a growing focus on not just using LLMs for security tasks but also securing the LLMs themselves.</li>
|
| 124 |
+
<li>Domain-specific techniques are becoming more prominent, indicating a move towards specialized security solutions.</li>
|
| 125 |
+
</ol>
|
| 126 |
</div>
|
| 127 |
""", unsafe_allow_html=True)
|
| 128 |
|
| 129 |
+
# Add some spacing
|
| 130 |
+
st.markdown("---")
|
| 131 |
+
|
| 132 |
+
# ---------------------------- Security Audit Section ----------------------------
|
| 133 |
st.subheader("π Run Python Dependency Security Audit")
|
| 134 |
|
| 135 |
+
# Explanation of the security audit
|
| 136 |
+
st.markdown("""
|
| 137 |
+
Keeping your project's dependencies secure is crucial. Use the button below to run a security audit on the Python packages used in this environment.
|
| 138 |
+
""")
|
| 139 |
+
|
| 140 |
+
# Button to trigger the security audit
|
| 141 |
if st.button('Run pip-audit for Security Check'):
|
| 142 |
with st.spinner('Running security audit...'):
|
| 143 |
+
# Simulate a delay for the audit process
|
| 144 |
+
time.sleep(2)
|
| 145 |
+
# Run the pip-audit command
|
| 146 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
| 147 |
+
# Display the audit results
|
| 148 |
st.code(result.stdout)
|
| 149 |
+
st.success('Security audit completed!')
|
| 150 |
|
| 151 |
+
# Note about pip-audit
|
| 152 |
+
st.markdown("""
|
| 153 |
+
Note: The pip-audit tool checks your Python environment for packages with known vulnerabilities, referencing public CVE databases.
|
| 154 |
+
""")
|
| 155 |
+
|
| 156 |
+
# Add some spacing
|
| 157 |
+
st.markdown("---")
|
| 158 |
+
|
| 159 |
+
# ---------------------------- AI Pair Programming Recommendations ----------------------------
|
| 160 |
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
| 161 |
+
|
| 162 |
+
st.markdown("""
|
| 163 |
+
Leveraging AI in pair programming can enhance code security and quality. Here are some recommendations:
|
| 164 |
+
|
| 165 |
+
1. **Reduce Code Complexity**: AI tools can suggest code refactoring to simplify complex code blocks, making them more maintainable and less error-prone.
|
| 166 |
+
2. **Minimize Attack Surface**: AI can identify unnecessary code paths and dependencies, allowing developers to remove or secure them.
|
| 167 |
+
3. **Automate Security Scans**: Integrate AI-powered security scanners to continuously monitor code for vulnerabilities.
|
| 168 |
+
4. **Code Review Assistance**: AI can assist in code reviews by highlighting potential security issues and non-compliance with best practices.
|
| 169 |
+
5. **Secure Coding Practices**: AI can provide real-time suggestions for secure coding patterns and discourage the use of insecure functions.
|
| 170 |
+
""")
|
| 171 |
+
|
| 172 |
+
# Add some spacing
|
| 173 |
+
st.markdown("---")
|
| 174 |
+
|
| 175 |
+
# ---------------------------- Azure Deployment Information ----------------------------
|
| 176 |
+
st.subheader("βοΈ Azure Deployment Information")
|
| 177 |
+
|
| 178 |
+
st.markdown("""
|
| 179 |
+
While this demo does not include operational deployment, here's how you can deploy this application using Azure services:
|
| 180 |
+
|
| 181 |
+
**Azure Container Apps**: Use Azure Container Apps to deploy and manage containerized applications at scale without managing infrastructure.
|
| 182 |
+
- Benefits:
|
| 183 |
+
- Serverless containers
|
| 184 |
+
- Built-in support for scaling
|
| 185 |
+
- Integrated with Azure services
|
| 186 |
+
|
| 187 |
+
**Azure Container Registry (ACR)**: Store and manage your container images securely.
|
| 188 |
+
- Steps:
|
| 189 |
+
1. Build your Docker image.
|
| 190 |
+
2. Push the image to ACR.
|
| 191 |
+
3. Configure Azure Container Apps to pull the image from ACR.
|
| 192 |
+
|
| 193 |
+
**Azure Cosmos DB**: Use Cosmos DB to store security audit results, logs, and other application data.
|
| 194 |
+
- Features:
|
| 195 |
+
- Globally distributed
|
| 196 |
+
- Multi-model database service
|
| 197 |
+
- Low latency and high availability
|
| 198 |
+
""")
|
| 199 |
+
|
| 200 |
+
# Add some spacing
|
| 201 |
+
st.markdown("---")
|
| 202 |
+
|
| 203 |
+
# ---------------------------- Footer and Additional Resources ----------------------------
|
| 204 |
+
st.subheader("π Additional Resources")
|
| 205 |
+
|
| 206 |
+
# List of additional resources and links
|
| 207 |
st.markdown("""
|
| 208 |
+
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
| 209 |
+
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
|
| 210 |
+
- [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
|
| 211 |
+
- [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
|
| 212 |
+
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
|
| 213 |
""")
|
| 214 |
|
| 215 |
+
# Contact information or call to action
|
| 216 |
+
st.markdown("""
|
| 217 |
+
If you have any questions or would like to contribute to this project, please reach out or submit a pull request on GitHub.
|
|
|
|
|
|
|
|
|
|
| 218 |
""")
|
| 219 |
+
|
| 220 |
+
# Add some spacing
|
| 221 |
+
st.markdown("---")
|
| 222 |
+
|
| 223 |
+
# ---------------------------- Sidebar Content ----------------------------
|
| 224 |
+
# Add content to the sidebar
|
| 225 |
+
st.sidebar.title("Navigation")
|
| 226 |
+
st.sidebar.markdown("""
|
| 227 |
+
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
|
| 228 |
+
- [Survey Overview Table](#survey-overview-table)
|
| 229 |
+
- [Security Model Visualization](#security-model-visualization-with-mermaid)
|
| 230 |
+
- [Additional Insights](#additional-insights)
|
| 231 |
+
- [Security Audit](#run-python-dependency-security-audit)
|
| 232 |
+
- [AI Recommendations](#ai-pair-programming-security-recommendations)
|
| 233 |
+
- [Azure Deployment](#azure-deployment-information)
|
| 234 |
+
- [Additional Resources](#additional-resources)
|
| 235 |
+
""", unsafe_allow_html=True)
|
| 236 |
+
|
| 237 |
+
# Add an about section
|
| 238 |
+
st.sidebar.title("About")
|
| 239 |
+
st.sidebar.info("""
|
| 240 |
+
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
|
| 241 |
+
""")
|
| 242 |
+
|
| 243 |
+
# ---------------------------- End of App ----------------------------
|