Spaces:
Sleeping
Sleeping
File size: 8,295 Bytes
41d63c9 cd93ea5 41d63c9 df20a13 41d63c9 766b9f5 41d63c9 cd93ea5 41d63c9 df20a13 41d63c9 bd64b4c 75ff8df bd64b4c 75ff8df 41d63c9 cd93ea5 41d63c9 cd93ea5 766b9f5 cd93ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
import os
import json
from datetime import datetime
from threading import Lock
from datasets import Dataset
from huggingface_hub import HfApi
import pandas as pd
# Configuration
DATASET_REPO = "assafvayner/webhook-messages"
BATCH_SIZE = 100
ALLOWED_SCOPES = {"repo", "repo.content"}
# In-memory storage
webhook_messages = []
message_lock = Lock()
batch_counter = 0
latest_batch_file = None
# HuggingFace API client
hf_api = HfApi(token=os.environ.get("HF_TOKEN"))
# Ensure dataset repo exists on startup
try:
hf_api.create_repo(
repo_id=DATASET_REPO,
repo_type="dataset",
exist_ok=True
)
print(f"β
Dataset repository ready: {DATASET_REPO}")
except Exception as e:
print(f"β οΈ Warning: Could not create/verify dataset repo: {str(e)}")
def save_batch_to_dataset(messages, batch_num):
"""Save a batch of webhook messages to the HuggingFace dataset as a parquet file."""
global latest_batch_file
try:
# Create DataFrame from messages
df = pd.DataFrame(messages)
# Create filename with timestamp and batch number
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
filename = f"batch_{batch_num:06d}_{timestamp}.parquet"
# Convert to HuggingFace Dataset
dataset = Dataset.from_pandas(df)
# Upload to the dataset repo
dataset.to_parquet(f"/tmp/{filename}")
hf_api.upload_file(
path_or_fileobj=f"/tmp/{filename}",
path_in_repo=f"data/{filename}",
repo_id=DATASET_REPO,
repo_type="dataset",
)
print(f"β
Saved batch {batch_num} with {len(messages)} messages to {DATASET_REPO}")
# Update latest batch file info
latest_batch_file = f"data/{filename}"
# Clean up temp file
os.remove(f"/tmp/{filename}")
return True
except Exception as e:
print(f"β Error saving batch {batch_num}: {str(e)}")
return False
def process_webhook(payload: dict, event_type: str):
"""Process and store webhook payload if it matches allowed scopes."""
global batch_counter
# Extract scope from payload
scope = payload.get("event", {}).get("scope")
# Filter by scope
if scope not in ALLOWED_SCOPES:
return False
# Create message entry
message = {
"timestamp": datetime.utcnow().isoformat(),
"event_type": event_type,
"scope": scope,
"payload": json.dumps(payload) # Store full payload as JSON string
}
with message_lock:
webhook_messages.append(message)
current_count = len(webhook_messages)
# Check if we need to save a batch
if current_count >= BATCH_SIZE:
batch_counter += 1
messages_to_save = webhook_messages.copy()
webhook_messages.clear()
# Save in background (non-blocking)
save_batch_to_dataset(messages_to_save, batch_counter)
return True
# Create FastAPI app first
app = FastAPI()
# Add webhook endpoints BEFORE mounting Gradio
@app.post("/webhooks/hub")
async def webhook_endpoint(request: Request):
"""
Webhook endpoint for HuggingFace Hub events.
Supports all webhook events documented at:
https://huggingface.co/docs/hub/webhooks
"""
try:
# Get the event type from headers
event_type = request.headers.get("X-Event-Type", "unknown")
# Parse JSON payload
payload = await request.json()
# Process the webhook
processed = process_webhook(payload, event_type)
if processed:
return JSONResponse(
content={
"status": "success",
"message": "Webhook received and queued",
"scope": payload.get("event", {}).get("scope")
},
status_code=200
)
else:
return JSONResponse(
content={
"status": "ignored",
"message": "Webhook scope not in allowed list",
"scope": payload.get("event", {}).get("scope")
},
status_code=200
)
except Exception as e:
print(f"Error processing webhook: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/webhooks/health")
async def health_check():
"""Health check endpoint."""
with message_lock:
return {
"status": "healthy",
"messages_in_memory": len(webhook_messages),
"batches_saved": batch_counter,
"allowed_scopes": list(ALLOWED_SCOPES)
}
# Create Gradio interface
with gr.Blocks(title="HuggingFace Webhook Processor") as demo:
gr.Markdown("""
# π HuggingFace Webhook Processor
This app receives HuggingFace Hub webhooks and stores them for analysis.
## Webhook Endpoint
Send POST requests to: `/webhooks/hub`
## Configuration
- **Filtered Scopes**: `repo`, `repo.content`
- **Batch Size**: 100 messages
- **Dataset**: `assafvayner/webhook-messages`
## Status
""")
with gr.Row():
with gr.Column():
status_text = gr.Textbox(
label="Current Status",
value="Waiting for webhooks...",
interactive=False
)
message_count = gr.Number(
label="Messages in Memory",
value=0,
interactive=False
)
with gr.Column():
batch_count = gr.Number(
label="Batches Saved",
value=0,
interactive=False
)
latest_batch = gr.Textbox(
label="Latest Batch File",
value="No batches saved yet",
interactive=False
)
def get_status():
with message_lock:
batch_file = latest_batch_file if latest_batch_file else "No batches saved yet"
return (
f"Active - Ready to receive webhooks",
len(webhook_messages),
batch_counter,
batch_file
)
def get_recent_messages():
with message_lock:
if not webhook_messages:
return "No messages in memory yet"
# Get first 10 messages (or fewer if less than 10)
messages_to_show = webhook_messages[:10]
# Format messages nicely
output = []
for i, msg in enumerate(messages_to_show, 1):
output.append(f"### Message {i}")
output.append(f"**Timestamp:** {msg['timestamp']}")
output.append(f"**Event Type:** {msg['event_type']}")
output.append(f"**Scope:** {msg['scope']}")
output.append(f"**Payload:**")
# Parse and pretty-print JSON
try:
payload = json.loads(msg['payload'])
output.append(f"```json\n{json.dumps(payload, indent=2)}\n```")
except:
output.append(f"```\n{msg['payload']}\n```")
output.append("\n---\n")
return "\n".join(output)
refresh_btn = gr.Button("π Refresh Status")
refresh_btn.click(
fn=get_status,
outputs=[status_text, message_count, batch_count, latest_batch]
)
with gr.Accordion("π Recent Messages (First 10)", open=False):
recent_messages = gr.Markdown(
value="Click 'Refresh Messages' to load recent messages"
)
refresh_messages_btn = gr.Button("π Refresh Messages")
refresh_messages_btn.click(
fn=get_recent_messages,
outputs=[recent_messages]
)
# Load initial status on page load
demo.load(
fn=get_status,
outputs=[status_text, message_count, batch_count, latest_batch]
)
# Mount Gradio on our FastAPI app
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the app
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|