import argparse import logging import os import nrrd import numpy as np from tqdm import tqdm def get_heatmap(args: argparse.Namespace) -> argparse.Namespace: """ Generate heatmaps from DWI (Diffusion Weighted Imaging) and ADC (Apparent Diffusion Coefficient) medical imaging data. This function processes medical imaging files (DWI and ADC) along with their corresponding segmentation masks to create normalized heatmaps. It combines the DWI and ADC heatmaps through element-wise multiplication. Args: args: An object containing the following attributes: - t2_dir (str): Directory path containing T2 image files. - dwi_dir (str): Directory path containing DWI image files. - adc_dir (str): Directory path containing ADC image files. - seg_dir (str): Directory path containing segmentation mask files. - output_dir (str): Base output directory where 'heatmaps/' subdirectory will be created. - heatmapdir (str): Output directory for heatmap files (created by function). Returns: args: The modified args object with heatmapdir attribute set. Raises: FileNotFoundError: If input directories or files do not exist. ValueError: If NRRD files cannot be read properly. Notes: - DWI heatmap is normalized as (dwi - min) / (max - min) - ADC heatmap is normalized as (max - adc) / (max - min) (inverted) - Final heatmap is re-normalized to [0, 1] range - If all values in a mask region are identical, the heatmap is skipped for that modality - Output files are written in NRRD format with the same header as the input DWI file """ files = os.listdir(args.t2_dir) args.heatmapdir = os.path.join(args.output_dir, "heatmaps/") os.makedirs(args.heatmapdir, exist_ok=True) logging.info("Starting heatmap generation") for file in tqdm(files): bool_dwi = False bool_adc = False mask, _ = nrrd.read(os.path.join(args.seg_dir, file)) dwi, header_dwi = nrrd.read(os.path.join(args.dwi_dir, file)) adc, header_adc = nrrd.read(os.path.join(args.adc_dir, file)) nonzero_vals_dwi = dwi[mask > 0] if len(nonzero_vals_dwi) > 0: min_val = nonzero_vals_dwi.min() max_val = nonzero_vals_dwi.max() heatmap_dwi = np.zeros_like(dwi, dtype=np.float32) if min_val != max_val: heatmap_dwi = (dwi - min_val) / (max_val - min_val) masked_heatmap_dwi = np.where(mask > 0, heatmap_dwi, heatmap_dwi[mask > 0].min()) else: bool_dwi = True else: bool_dwi = True nonzero_vals_adc = adc[mask > 0] if len(nonzero_vals_adc) > 0: min_val = nonzero_vals_adc.min() max_val = nonzero_vals_adc.max() heatmap_adc = np.zeros_like(adc, dtype=np.float32) if min_val != max_val: heatmap_adc = (max_val - adc) / (max_val - min_val) masked_heatmap_adc = np.where(mask > 0, heatmap_adc, heatmap_adc[mask > 0].min()) else: bool_adc = True else: bool_adc = True if not bool_dwi and not bool_adc: mix_mask = masked_heatmap_dwi * masked_heatmap_adc write_header = header_dwi elif bool_dwi: mix_mask = masked_heatmap_adc write_header = header_adc elif bool_adc: mix_mask = masked_heatmap_dwi write_header = header_dwi else: mix_mask = np.ones_like(adc, dtype=np.float32) write_header = header_dwi mix_mask = (mix_mask - mix_mask.min()) / (mix_mask.max() - mix_mask.min()) nrrd.write(os.path.join(args.heatmapdir, file), mix_mask, write_header) return args