File size: 6,137 Bytes
caf6ee7
906fcb9
caf6ee7
 
906fcb9
caf6ee7
 
906fcb9
 
1baebae
906fcb9
 
caf6ee7
906fcb9
caf6ee7
906fcb9
caf6ee7
 
 
906fcb9
caf6ee7
 
906fcb9
1baebae
906fcb9
caf6ee7
906fcb9
 
95dc457
6f43d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95dc457
6f43d62
 
95dc457
 
 
6f43d62
 
1baebae
95dc457
caf6ee7
906fcb9
 
 
 
 
 
 
 
 
 
 
 
1baebae
906fcb9
 
 
 
caf6ee7
906fcb9
 
 
1baebae
 
caf6ee7
1baebae
 
 
906fcb9
1baebae
 
 
906fcb9
 
1baebae
 
 
 
 
 
906fcb9
 
1baebae
906fcb9
 
 
 
 
 
1baebae
 
caf6ee7
1baebae
 
 
906fcb9
1baebae
 
 
906fcb9
1baebae
 
 
 
 
 
 
 
906fcb9
 
1baebae
906fcb9
 
 
 
 
 
caf6ee7
 
 
6f43d62
 
 
 
 
 
95dc457
 
6f43d62
 
906fcb9
 
 
 
 
 
 
 
1baebae
 
 
906fcb9
 
 
 
 
 
1baebae
906fcb9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import os
from typing import Literal

import numpy as np
import torch
from monai.data import PersistentDataset, load_decathlon_datalist
from monai.transforms import (
    Compose,
    ConcatItemsd,
    DeleteItemsd,
    EnsureTyped,
    LoadImaged,
    NormalizeIntensityd,
    RandCropByPosNegLabeld,
    RandWeightedCropd,
    ToTensord,
    Transform,
    Transposed,
)
from torch.utils.data.dataloader import default_collate

from .custom_transforms import (
    ClipMaskIntensityPercentilesd,
    ElementwiseProductd,
    NormalizeIntensity_customd,
)


class DummyMILDataset(torch.utils.data.Dataset):
    def __init__(self, args, num_samples=8):
        self.num_samples = num_samples
        self.args = args

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        # Simulate the output of your 'data_transform'
        # A list of dictionaries, one for each 'tile_count' (patch)
        bag = []
        label_value = float(index % 2)
        for _ in range(self.args.tile_count):
            item = {
                # Shape: (Channels=3, Depth, H, W) based on your Transposed(indices=(0, 3, 1, 2))
                "image": torch.randn(3, self.args.depth, self.args.tile_size, self.args.tile_size),
                "label": torch.tensor(label_value, dtype=torch.float32),
            }
            if self.args.use_heatmap:
                item["final_heatmap"] = torch.randn(
                    1, self.args.depth, self.args.tile_size, self.args.tile_size
                )
            bag.append(item)
        return bag


def list_data_collate(batch: list):
    """
    Combine instances from a list of dicts into a single dict, by stacking them along first dim
    [{'image' : 3xHxW}, {'image' : 3xHxW}, {'image' : 3xHxW}...] - > {'image' : Nx3xHxW}
    followed by the default collate which will form a batch BxNx3xHxW
    """

    for i, item in enumerate(batch):
        data = item[0]
        data["image"] = torch.stack([ix["image"] for ix in item], dim=0)

        if all("final_heatmap" in ix for ix in item):
            data["final_heatmap"] = torch.stack([ix["final_heatmap"] for ix in item], dim=0)

        batch[i] = data
    return default_collate(batch)


def data_transform(args: argparse.Namespace) -> Transform:
    if args.use_heatmap:
        transform = Compose(
            [
                LoadImaged(
                    keys=["image", "mask", "dwi", "adc", "heatmap"],
                    reader="ITKReader",
                    ensure_channel_first=True,
                    dtype=np.float32,
                ),
                ClipMaskIntensityPercentilesd(keys=["image"], lower=0, upper=99.5, mask_key="mask"),
                ConcatItemsd(
                    keys=["image", "dwi", "adc"], name="image", dim=0
                ),  # stacks to (3, H, W)
                NormalizeIntensity_customd(keys=["image"], channel_wise=True, mask_key="mask"),
                ElementwiseProductd(keys=["mask", "heatmap"], output_key="final_heatmap"),
                RandWeightedCropd(
                    keys=["image", "final_heatmap"],
                    w_key="final_heatmap",
                    spatial_size=(args.tile_size, args.tile_size, args.depth),
                    num_samples=args.tile_count,
                ),
                EnsureTyped(keys=["label"], dtype=torch.float32),
                Transposed(keys=["image"], indices=(0, 3, 1, 2)),
                DeleteItemsd(keys=["mask", "dwi", "adc", "heatmap"]),
                ToTensord(keys=["image", "label", "final_heatmap"]),
            ]
        )
    else:
        transform = Compose(
            [
                LoadImaged(
                    keys=["image", "mask", "dwi", "adc"],
                    reader="ITKReader",
                    ensure_channel_first=True,
                    dtype=np.float32,
                ),
                ClipMaskIntensityPercentilesd(keys=["image"], lower=0, upper=99.5, mask_key="mask"),
                ConcatItemsd(
                    keys=["image", "dwi", "adc"], name="image", dim=0
                ),  # stacks to (3, H, W)
                NormalizeIntensityd(keys=["image"], channel_wise=True),
                RandCropByPosNegLabeld(
                    keys=["image"],
                    label_key="mask",
                    spatial_size=(args.tile_size, args.tile_size, args.depth),
                    pos=1,
                    neg=0,
                    num_samples=args.tile_count,
                ),
                EnsureTyped(keys=["label"], dtype=torch.float32),
                Transposed(keys=["image"], indices=(0, 3, 1, 2)),
                DeleteItemsd(keys=["mask", "dwi", "adc"]),
                ToTensord(keys=["image", "label"]),
            ]
        )
    return transform


def get_dataloader(
    args: argparse.Namespace, split: Literal["train", "test"]
) -> torch.utils.data.DataLoader:
    if args.dry_run:
        print(f"🛠️  DRY RUN: Creating synthetic {split} dataloader...")
        dummy_ds = DummyMILDataset(args, num_samples=args.batch_size * 2)
        return torch.utils.data.DataLoader(
            dummy_ds,
            batch_size=args.batch_size,
            collate_fn=list_data_collate,  # Uses your custom stacking logic
            num_workers=0,  # Keep it simple for dry run
        )

    data_list = load_decathlon_datalist(
        data_list_file_path=args.dataset_json,
        data_list_key=split,
        base_dir=args.data_root,
    )
    cache_dir_ = os.path.join(args.logdir, "cache")
    os.makedirs(os.path.join(cache_dir_, split), exist_ok=True)
    transform = data_transform(args)
    dataset = PersistentDataset(
        data=data_list, transform=transform, cache_dir=os.path.join(cache_dir_, split)
    )
    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=(split == "train"),
        num_workers=args.workers,
        pin_memory=True,
        multiprocessing_context="fork" if args.workers > 0 else None,
        sampler=None,
        collate_fn=list_data_collate,
    )
    return loader