Spaces:
Sleeping
Sleeping
| import torch | |
| import torchvision | |
| from torch import nn | |
| from torchvision.models._api import WeightsEnum | |
| from torch.hub import load_state_dict_from_url | |
| def get_state_dict(self, *args, **kwargs): | |
| kwargs.pop("check_hash") | |
| return load_state_dict_from_url(self.url, *args, **kwargs) | |
| WeightsEnum.get_state_dict = get_state_dict | |
| def create_effnetb2(num_classes: int=3): | |
| effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
| effnetb2_transforms = effnetb2_weights.transforms() | |
| effnetb2 = torchvision.models.efficientnet_b2(weights="DEFAULT") | |
| for param in effnetb2.parameters(): | |
| param.requires_grad = False | |
| torch.manual_seed(42) | |
| torch.cuda.manual_seed(42) | |
| effnetb2.classifier = nn.Sequential( | |
| nn.Dropout(p=0.3, inplace=True), | |
| nn.Linear(in_features=1408, out_features=num_classes) | |
| ) | |
| return effnetb2, effnetb2_transforms | |