Spaces:
Sleeping
Sleeping
| import os | |
| from pathlib import Path | |
| import random | |
| import torch | |
| from model import create_effnetb2 | |
| import gradio as gr | |
| from typing import Dict, Tuple | |
| from time import time | |
| effnetb2, effnetb2_transforms = create_effnetb2(101) | |
| effnetb2.load_state_dict(torch.load(f='effnetB2_101.pth', map_location=torch.device('cpu'))) | |
| with open('class_names.txt', 'r') as f: | |
| class_names = [food.strip() for food in f.readlines()] | |
| def predict(image) -> Tuple[Dict, float]: | |
| start = time() | |
| transformed_image = effnetb2_transforms(image).unsqueeze(0) | |
| effnetb2.eval() | |
| with torch.inference_mode(): | |
| y_logits = effnetb2(transformed_image) | |
| probs = torch.softmax(y_logits, dim=1).squeeze() | |
| pred_labels_and_probs = {class_names[i]: float(probs[i].item()) for i in range(len(class_names))} | |
| end = time() | |
| return pred_labels_and_probs, round(end - start, 5) | |
| images = os.listdir('examples') | |
| example_list = [[str('examples/' + x)] for x in images] | |
| # Create title, description and article strings | |
| title = "FoodVision" | |
| description = "An EfficientNetB2 feature extractor computer vision model to classify images of food." | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, # mapping function from input to output | |
| inputs=gr.Image(type="pil"), # what are the inputs? | |
| outputs=[gr.Label(num_top_classes=5, label="Predictions"), # what are the outputs? | |
| gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
| examples=example_list, | |
| title=title, | |
| description=description) | |
| # Launch the demo! | |
| demo.launch(debug=False) | |