Commit History

Update app.py
c9f51e5
verified

VIATEUR-AI commited on

Update requirements.txt
f185b84
verified

VIATEUR-AI commited on

Update app.py
6aae26d
verified

VIATEUR-AI commited on

Update app.py
b4be76a
verified

VIATEUR-AI commited on

Update requirements.txt
51cebbf
verified

VIATEUR-AI commited on

Update app.py
16dff19
verified

VIATEUR-AI commited on

Update requirements.txt
92ebb5e
verified

VIATEUR-AI commited on

Update app.py
a9587f9
verified

VIATEUR-AI commited on

Update requirements.txt
a5846ad
verified

VIATEUR-AI commited on

Update requirements.txt
11ce249
verified

VIATEUR-AI commited on

Update requirements.txt
60f83f2
verified

VIATEUR-AI commited on

Rename .streamlit to .streamlit/config.toml:
02591b7
verified

VIATEUR-AI commited on

Create .streamlit
a01eb22
verified

VIATEUR-AI commited on

Update students.csv
58cc881
verified

VIATEUR-AI commited on

Update app.py
eefcab6
verified

VIATEUR-AI commited on

Update requirements.txt
1975525
verified

VIATEUR-AI commited on

math_grade,programming_grade,gpa,interest,recommended_course 85,80,3.8,Data Science,Machine Learning 78,70,3.5,Data Science,Data Mining 60,65,2.8,Networking,Computer Networks 55,50,2.5,Programming,Introduction to Programming 90,88,3.9,AI,Artificial Intelligence 72,75,3.2,Security,Cyber Security 68,60,3.0,Statistics,Applied Statistics 40,45,2.0,Programming,Basic Computing
4889641
verified

VIATEUR-AI commited on

Create requirements.txt
9c33376
verified

VIATEUR-AI commited on

import streamlit as st import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import seaborn as sns # ----------------------- # Load Dataset # ----------------------- data = pd.read_csv("students.csv") # Encode categorical data le_interest = LabelEncoder() le_course = LabelEncoder() data["interest"] = le_interest.fit_transform(data["interest"]) data["recommended_course"] = le_course.fit_transform(data["recommended_course"]) # Features and target X = data[["math_grade", "programming_grade", "gpa", "interest"]] y = data["recommended_course"] # Train model model = DecisionTreeClassifier() model.fit(X, y) # ----------------------- # Streamlit UI # ----------------------- st.set_page_config(page_title="Course Recommendation System", layout="wide") st.title("πŸŽ“ University Course Recommendation System") st.markdown(""" This interactive system recommends the most suitable university courses for students based on their grades and interests. """) # Sidebar for input st.sidebar.header("Input Student Data") math = st.sidebar.slider("Math Grade", 0, 100, 70) programming = st.sidebar.slider("Programming Grade", 0, 100, 70) gpa = st.sidebar.slider("GPA", 0.0, 4.0, 3.0, 0.1) interest = st.sidebar.selectbox("Interest", le_interest.classes_) # Recommendation if st.button("Recommend Course"): interest_encoded = le_interest.transform([interest])[0] pred = model.predict([[math, programming, gpa, interest_encoded]]) course_name = le_course.inverse_transform(pred) st.success(f"βœ… Recommended Course: {course_name[0]}") # Display student data in table st.subheader("πŸ“Š Your Input Data") input_df = pd.DataFrame({ "Math Grade": [math], "Programming Grade": [programming], "GPA": [gpa], "Interest": [interest] }) st.table(input_df) # Graph: Compare with dataset st.subheader("πŸ“ˆ Comparison with Dataset") fig, ax = plt.subplots(figsize=(8,4)) sns.scatterplot(data=data, x="math_grade", y="programming_grade", hue="recommended_course", palette="tab10", s=100, ax=ax) ax.scatter(math, programming, color='red', s=200, label="You") ax.set_title("Math vs Programming Grades") ax.legend() st.pyplot(fig) # Show dataset with st.expander("View Dataset"): st.dataframe(data)
c92d845
verified

VIATEUR-AI commited on

initial commit
1b3dd7b
verified

VIATEUR-AI commited on