File size: 7,647 Bytes
552ee07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
import numpy as np
from PIL import Image
import os

# Aircraft class names (10 classes from the dataset)
CLASS_NAMES = [
    '707-320', '737-400', '767-300', 'DC-9-30', 'DH-82', 
    'Falcon_2000', 'Il-76', 'MD-11', 'Metroliner', 'PA-28'
]

class AircraftClassifier(nn.Module):
    """ResNet-18 based aircraft classifier"""
    def __init__(self, num_classes=10):
        super(AircraftClassifier, self).__init__()
        # Load pre-trained ResNet-18
        self.backbone = models.resnet18(pretrained=True)
        # Replace the final fully connected layer
        num_features = self.backbone.fc.in_features
        self.backbone.fc = nn.Linear(num_features, num_classes)
    
    def forward(self, x):
        return self.backbone(x)

# Image preprocessing pipeline
def get_transforms():
    """Get image preprocessing transforms"""
    return transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                           std=[0.229, 0.224, 0.225])
    ])

# Initialize model and device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AircraftClassifier(num_classes=len(CLASS_NAMES))

# Try to load trained model weights
model_path = 'models/aircraft_classifier.pth'
if os.path.exists(model_path):
    try:
        model.load_state_dict(torch.load(model_path, map_location=device))
        print(f"βœ… Loaded trained model from {model_path}")
    except Exception as e:
        print(f"⚠️ Could not load trained model: {e}")
        print("Using random weights - please train the model first!")
else:
    print(f"⚠️ Model file not found at {model_path}")
    print("Using random weights - please train the model first!")

model = model.to(device)
model.eval()

# Get image transforms
transform = get_transforms()

def classify_aircraft(image):
    """
    Classify an aircraft image
    
    Args:
        image: PIL Image or numpy array
        
    Returns:
        dict: Classification results with confidence scores
    """
    try:
        # Convert to PIL Image if needed
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        
        # Convert to RGB if needed
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Apply transforms
        input_tensor = transform(image).unsqueeze(0).to(device)
        
        # Get prediction
        with torch.no_grad():
            outputs = model(input_tensor)
            probabilities = torch.softmax(outputs, dim=1)
            
        # Get top predictions
        probs = probabilities.cpu().numpy()[0]
        
        # Create results dictionary for Gradio
        results = {}
        for i, class_name in enumerate(CLASS_NAMES):
            results[class_name] = float(probs[i])
            
        return results
        
    except Exception as e:
        print(f"Error in classification: {e}")
        # Return empty results in case of error
        return {class_name: 0.0 for class_name in CLASS_NAMES}

def get_top_predictions(image):
    """
    Get top 3 predictions with confidence scores
    
    Args:
        image: PIL Image or numpy array
        
    Returns:
        str: Formatted string with top predictions
    """
    try:
        results = classify_aircraft(image)
        
        # Sort by confidence
        sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)
        
        # Format top 3 predictions
        output_text = "🎯 **Top Predictions:**\n\n"
        for i, (class_name, confidence) in enumerate(sorted_results[:3]):
            confidence_percent = confidence * 100
            output_text += f"{i+1}. **{class_name}**: {confidence_percent:.2f}%\n"
            
        return output_text
        
    except Exception as e:
        return f"❌ Error during classification: {str(e)}"

# Create Gradio interface
def create_interface():
    """Create and configure the Gradio interface"""
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        max-width: 900px !important;
        margin: auto !important;
    }
    .title {
        text-align: center;
        font-size: 2.5em;
        font-weight: bold;
        margin-bottom: 0.5em;
    }
    .description {
        text-align: center;
        font-size: 1.2em;
        color: #666;
        margin-bottom: 2em;
    }
    """
    
    with gr.Blocks(css=css, title="Aircraft Classifier") as iface:
        # Header
        gr.HTML("""
        <div class="title">πŸ›©οΈ Aircraft Classifier</div>
        <div class="description">
            Fine-grained aircraft classification using deep learning<br>
            Upload an image to classify it into one of 10 aircraft types
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Input image
                input_image = gr.Image(
                    type="pil",
                    label="Upload Aircraft Image",
                    height=400
                )
                
                # Example images section (commented out to avoid network issues)
                # gr.HTML("### πŸ“Έ Try these example images:")
                # gr.Examples(
                #     examples=[
                #         ["path/to/local/example1.jpg"],
                #         ["path/to/local/example2.jpg"],
                #     ],
                #     inputs=input_image,
                #     cache_examples=False
                # )
                
            with gr.Column(scale=1):
                # Classification results
                classification_output = gr.Label(
                    label="🎯 Classification Results",
                    num_top_classes=10
                )
                
                # Top predictions text
                top_predictions = gr.Textbox(
                    label="πŸ“Š Detailed Results",
                    lines=6,
                    interactive=False
                )
        
        # Model information
        gr.HTML("""
        <div style="margin-top: 2em; padding: 1em; background-color: #f8f9fa; border-radius: 8px;">
            <h3>πŸ”§ Model Information</h3>
            <ul>
                <li><b>Architecture:</b> ResNet-18 with transfer learning</li>
                <li><b>Dataset:</b> FGVC-Aircraft (10 classes)</li>
                <li><b>Accuracy:</b> 87.17% on test set</li>
                <li><b>Classes:</b> 707-320, 737-400, 767-300, DC-9-30, DH-82, Falcon_2000, Il-76, MD-11, Metroliner, PA-28</li>
            </ul>
        </div>
        """)
        
        # Set up the prediction triggers
        input_image.change(
            fn=classify_aircraft,
            inputs=[input_image],
            outputs=[classification_output]
        )
        
        input_image.change(
            fn=get_top_predictions,
            inputs=[input_image],
            outputs=[top_predictions]
        )
    
    return iface

# Launch the interface
if __name__ == "__main__":
    print("πŸš€ Starting Aircraft Classifier Gradio Interface...")
    print(f"πŸ“± Device: {device}")
    print(f"🎯 Classes: {len(CLASS_NAMES)}")
    
    # Create and launch interface
    iface = create_interface()
    iface.launch(
        share=True,  # Creates a public link
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,  # Default Gradio port
        show_error=True
    )