File size: 15,136 Bytes
e964b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from scipy.stats import pearsonr
from sklearn.model_selection import (
    train_test_split,
    GridSearchCV,
    cross_val_score,
)
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from factor_analyzer import FactorAnalyzer
import pickle

def train(df):
    unique_genres = set(genre for sublist in df["genres"].str.split() for genre in sublist)
    for genre in unique_genres:
        df[genre] = df["genres"].apply(lambda x: 1 if genre in x.split() else 0)
    df = df.drop(columns=["genres"])

    selected_columns = [
        "month",
        "year",
        "mpaa",
        "budget",
        "runtime",
        "screens",
        "opening_week",
        "domestic_box_office",
        "user_vote",
        "ratings",
        "critic_vote",
        "meta_score",
        "country",
        "sequel",
    ] + list(unique_genres)
    df = df[selected_columns]

    genre_columns = list(unique_genres)
    genre_data = df[genre_columns]
    scaler = StandardScaler()
    genre_data_scaled = scaler.fit_transform(genre_data)

    fa = FactorAnalyzer()
    fa.fit(genre_data_scaled)
    eigenvalues, _ = fa.get_eigenvalues()
    n_factors = sum(eigenvalues > 1)
    print(f"Number of factors to retain: {n_factors}")

    fa = FactorAnalyzer(n_factors=n_factors, rotation="varimax")
    fa.fit(genre_data_scaled)
    factor_scores = fa.transform(genre_data_scaled)

    factor_scores_df = pd.DataFrame(
        factor_scores, columns=[f"Factor{i+1}" for i in range(n_factors)]
    )

    df = pd.concat([df, factor_scores_df], axis=1)

    df = df.drop(columns=genre_columns)

    mpaa_label_encoder = LabelEncoder()
    country_label_encoder = LabelEncoder()
    df["mpaa"] = mpaa_label_encoder.fit_transform(df["mpaa"])
    df["country"] = country_label_encoder.fit_transform(df["country"])
    df.to_csv("merge_data/preprocess_data.csv", index=False)
    X = df.drop("domestic_box_office", axis=1)
    y = df["domestic_box_office"]
    y_log = np.log(y)

    correlation_threshold = 0.2
    selected_features = [
        column
        for column in X.columns
        if abs(pearsonr(X[column], y_log)[0]) > correlation_threshold
    ]

    X = X[selected_features]

    X_train, X_test, y_train, y_test = train_test_split(
        X, y_log, test_size=0.2, random_state=42
    )

    numeric_features = selected_features
    numeric_transformer = StandardScaler()

    preprocessor = ColumnTransformer(
        transformers=[
            ("num", numeric_transformer, numeric_features),
        ]
    )

    def grid_search(model, param_grid):
        pipeline = Pipeline(
            steps=[
                ("preprocessor", preprocessor),
                ("regressor", model),
            ]
        )
        search = GridSearchCV(
            pipeline,
            param_grid,
            cv=5,
            n_jobs=-1,
            scoring="neg_mean_squared_error"
        )
        search.fit(X_train, y_train)
        return search

    param_grid_rf = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [None, 10, 20, 30],
        "regressor__min_samples_split": [2, 5, 10],
    }

    param_grid_gb = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [3, 5, 7],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
    }

    param_grid_xgb = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [3, 5, 7],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__subsample": [0.8, 0.9, 1.0],
    }

    param_grid_lgbm = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [-1, 10, 20],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__num_leaves": [31, 50, 100],
    }

    param_grid_cb = {
        "regressor__iterations": [50, 100, 150],
        "regressor__depth": [4, 6, 10],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__l2_leaf_reg": [1, 3, 5],
    }

    models = [
        (RandomForestRegressor(random_state=42), param_grid_rf),
        (GradientBoostingRegressor(random_state=42), param_grid_gb),
        (XGBRegressor(random_state=42), param_grid_xgb),
        (LGBMRegressor(random_state=42), param_grid_lgbm),
        (CatBoostRegressor(random_state=42, verbose=0), param_grid_cb),
    ]

    best_score = float("inf")
    best_model = None
    best_params = None

    list_file_name = ["model_efa/model_rf.pkl", "model_efa/model_gb.pkl", "model_efa/model_xgb.pkl", "model_efa/model_lgbm.pkl", "model_efa/model_cb.pkl"]

    index_file_name = 0
    for model, param_grid in models:
        search = grid_search(model, param_grid)
        best_score = -search.best_score_
        best_model = search.best_estimator_
        best_params = search.best_params_
        with open(list_file_name[index_file_name], "wb") as f:
            pickle.dump(best_model, f)
        index_file_name += 1

        print(f"Best model: {best_model}")
        print(f"Best parameters: {best_params}")
        print(f"Best score: {best_score}")

        y_pred_log = best_model.predict(X_test)
        y_pred = np.expm1(y_pred_log)
        y_test_actual = np.expm1(y_test)

        mse = mean_squared_error(y_test_actual, y_pred)
        rmse = np.sqrt(mse)
        mae = mean_absolute_error(y_test_actual, y_pred)
        r2 = r2_score(y_test_actual, y_pred)
        print(f"Mean Squared Error (MSE): {mse}")
        print(f"Root Mean Squared Error (RMSE): {rmse}")
        print(f"Mean Absolute Error (MAE): {mae}")
        print(f"R^2 Score: {r2}")

        scores = cross_val_score(best_model, X, y_log, cv=5, scoring="neg_mean_squared_error")
        rmse_scores = np.sqrt(-scores)
        print(f"Cross-validated RMSE scores: {rmse_scores}")
        print(f"Mean RMSE: {rmse_scores.mean()}")
        print(f"Standard deviation of RMSE: {rmse_scores.std()}")

        with open("gridsearch_result/result_with_opening.txt", "a") as f:
            print(f"Best model: {best_model}", file=f)
            print(f"Best parameters: {best_params}", file=f)
            print(f"Best score: {best_score}", file=f)
            print(f"Mean Squared Error (MSE): {mse}", file=f)
            print(f"Root Mean Squared Error (RMSE): {rmse}", file=f)
            print(f"Mean Absolute Error (MAE): {mae}", file=f)
            print(f"R^2 Score: {r2}", file=f)
            print(f"Cross-validated RMSE scores: {rmse_scores}", file=f)
            print(f"Mean RMSE: {rmse_scores.mean()}", file=f)
            print(f"Standard deviation of RMSE: {rmse_scores.std()}", file=f)
            print("----------------------------------------------------------------\n\n",file=f)

    with open("model_efa/mpaa_label_encoder.pkl", "wb") as f:
        pickle.dump(mpaa_label_encoder, f)
    with open("model_efa/country_label_encoder.pkl", "wb") as f:
        pickle.dump(country_label_encoder, f)
    with open("model_efa/scaler.pkl", "wb") as f:
        pickle.dump(scaler, f)
    with open("model_efa/factor_analyzer.pkl", "wb") as f:
        pickle.dump(fa, f)
    with open("model_efa/unique_genres.pkl", "wb") as f:
        pickle.dump(unique_genres, f)
    with open("model_efa/selected_features.pkl", "wb") as f:
        pickle.dump(selected_features, f)

def train_without_opening_week(df):
    unique_genres = set(genre for sublist in df["genres"].str.split() for genre in sublist)
    for genre in unique_genres:
        df[genre] = df["genres"].apply(lambda x: 1 if genre in x.split() else 0)
    df = df.drop(columns=["genres"])

    selected_columns = [
        "month",
        "year",
        "mpaa",
        "budget",
        "runtime",
        "screens",
        "domestic_box_office",
        "critic_vote",
        "meta_score",
        "country",
        "sequel",
    ] + list(unique_genres)
    df = df[selected_columns]

    genre_columns = list(unique_genres)
    genre_data = df[genre_columns]
    scaler = StandardScaler()
    genre_data_scaled = scaler.fit_transform(genre_data)

    fa = FactorAnalyzer()
    fa.fit(genre_data_scaled)
    eigenvalues, _ = fa.get_eigenvalues()
    n_factors = sum(eigenvalues > 1)
    print(f"Number of factors to retain: {n_factors}")

    fa = FactorAnalyzer(n_factors=n_factors, rotation="varimax")
    fa.fit(genre_data_scaled)
    factor_scores = fa.transform(genre_data_scaled)

    factor_scores_df = pd.DataFrame(
        factor_scores, columns=[f"Factor{i+1}" for i in range(n_factors)]
    )

    df = pd.concat([df, factor_scores_df], axis=1)

    df = df.drop(columns=genre_columns)

    mpaa_label_encoder = LabelEncoder()
    country_label_encoder = LabelEncoder()
    df["mpaa"] = mpaa_label_encoder.fit_transform(df["mpaa"])
    df["country"] = country_label_encoder.fit_transform(df["country"])
    df.to_csv("merge_data/preprocess_data_without_opening_week.csv", index=False)
    X = df.drop("domestic_box_office", axis=1)
    y = df["domestic_box_office"]
    y_log = np.log(y)

    correlation_threshold = 0.2
    selected_features = [
        column
        for column in X.columns
        if abs(pearsonr(X[column], y_log)[0]) > correlation_threshold
    ]

    X = X[selected_features]

    X_train, X_test, y_train, y_test = train_test_split(
        X, y_log, test_size=0.2, random_state=42
    )

    numeric_features = selected_features
    numeric_transformer = StandardScaler()

    preprocessor = ColumnTransformer(
        transformers=[
            ("num", numeric_transformer, numeric_features),
        ]
    )

    def grid_search(model, param_grid):
        pipeline = Pipeline(
            steps=[
                ("preprocessor", preprocessor),
                ("regressor", model),
            ]
        )
        search = GridSearchCV(
            pipeline,
            param_grid,
            cv=5,
            n_jobs=-1,
            scoring="neg_mean_squared_error"
        )
        search.fit(X_train, y_train)
        return search

    param_grid_rf = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [None, 10, 20, 30],
        "regressor__min_samples_split": [2, 5, 10],
    }

    param_grid_gb = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [3, 5, 7],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
    }

    param_grid_xgb = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [3, 5, 7],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__subsample": [0.8, 0.9, 1.0],
    }

    param_grid_lgbm = {
        "regressor__n_estimators": [50, 100, 150],
        "regressor__max_depth": [-1, 10, 20],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__num_leaves": [31, 50, 100],
    }

    param_grid_cb = {
        "regressor__iterations": [50, 100, 150],
        "regressor__depth": [4, 6, 10],
        "regressor__learning_rate": [0.01, 0.1, 0.2],
        "regressor__l2_leaf_reg": [1, 3, 5],
    }

    models = [
        (RandomForestRegressor(random_state=42), param_grid_rf),
        (GradientBoostingRegressor(random_state=42), param_grid_gb),
        (XGBRegressor(random_state=42), param_grid_xgb),
        (LGBMRegressor(random_state=42), param_grid_lgbm),
        (CatBoostRegressor(random_state=42, verbose=0), param_grid_cb),
    ]

    best_score = float("inf")
    best_model = None
    best_params = None

    list_file_name = ["model_efa/model_rf_without_opening_week.pkl", "model_efa/model_gb_without_opening_week.pkl", "model_efa/model_xgb_without_opening_week.pkl", "model_efa/model_lgbm_without_opening_week.pkl", "model_efa/model_cb_without_opening_week.pkl"]

    index_file_name = 0
    for model, param_grid in models:
        search = grid_search(model, param_grid)
        best_score = -search.best_score_
        best_model = search.best_estimator_
        best_params = search.best_params_
        with open(list_file_name[index_file_name], "wb") as f:
            pickle.dump(best_model, f)
        index_file_name += 1

        print(f"Best model: {best_model}")
        print(f"Best parameters: {best_params}")
        print(f"Best score: {best_score}")

        y_pred_log = best_model.predict(X_test)
        y_pred = np.expm1(y_pred_log)
        y_test_actual = np.expm1(y_test)

        mse = mean_squared_error(y_test_actual, y_pred)
        rmse = np.sqrt(mse)
        mae = mean_absolute_error(y_test_actual, y_pred)
        r2 = r2_score(y_test_actual, y_pred)
        print(f"Mean Squared Error (MSE): {mse}")
        print(f"Root Mean Squared Error (RMSE): {rmse}")
        print(f"Mean Absolute Error (MAE): {mae}")
        print(f"R^2 Score: {r2}")

        scores = cross_val_score(
            best_model, X, y_log, cv=5, scoring="neg_mean_squared_error"
        )
        rmse_scores = np.sqrt(-scores)
        print(f"Cross-validated RMSE scores: {rmse_scores}")
        print(f"Mean RMSE: {rmse_scores.mean()}")
        print(f"Standard deviation of RMSE: {rmse_scores.std()}")
        with open("gridsearch_result/result_without_opening.txt", "a") as f:
            print(f"Best model: {best_model}", file=f)
            print(f"Best parameters: {best_params}", file=f)
            print(f"Best score: {best_score}", file=f)
            print(f"Mean Squared Error (MSE): {mse}", file=f)
            print(f"Root Mean Squared Error (RMSE): {rmse}", file=f)
            print(f"Mean Absolute Error (MAE): {mae}", file=f)
            print(f"R^2 Score: {r2}", file=f)
            print(f"Cross-validated RMSE scores: {rmse_scores}", file=f)
            print(f"Mean RMSE: {rmse_scores.mean()}", file=f)
            print(f"Standard deviation of RMSE: {rmse_scores.std()}", file=f)
            print(
                "----------------------------------------------------------------\n\n",file=f
            )

    with open("model_efa/mpaa_label_encoder.pkl", "wb") as f:
        pickle.dump(mpaa_label_encoder, f)
    with open("model_efa/country_label_encoder.pkl", "wb") as f:
        pickle.dump(country_label_encoder, f)
    with open("model_efa/scaler.pkl", "wb") as f:
        pickle.dump(scaler, f)
    with open("model_efa/factor_analyzer.pkl", "wb") as f:
        pickle.dump(fa, f)
    with open("model_efa/unique_genres.pkl", "wb") as f:
        pickle.dump(unique_genres, f)
    with open("model_efa/selected_features_without_opening_week.pkl", "wb") as f:
        pickle.dump(selected_features, f)

if __name__ == "__main__":
    df = pd.read_csv("merge_data/final_merged.csv")
    # with open("gridsearch_result/result_with_opening.txt","w") as f:
    #     pass
    # with open("gridsearch_result/result_without_opening.txt","w") as f:
    #     pass
    train(df.copy())
    train_without_opening_week(df.copy())