omniparser-api / app_simplified.py
Netrava's picture
Upload 4 files
18315be verified
import os
import io
import json
import base64
import random
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from typing import Dict, Any, List
# Don't import torch to avoid potential issues
# import torch
# Simplified OmniParser API that doesn't rely on the actual OmniParser repository
# This is a fallback in case the main app.py has issues with dependencies
def process_image(image):
"""
Simplified implementation that simulates OmniParser functionality
"""
if image is None:
return {
"error": "No image provided",
"elements": [],
"visualization": None
}
# Create a copy of the image for visualization
vis_img = image.copy()
draw = ImageDraw.Draw(vis_img)
# Define some mock UI element types
element_types = ["Button", "Text Field", "Checkbox", "Dropdown", "Menu Item", "Icon", "Link"]
# ENHANCEMENT OPPORTUNITY: Data Fusion
# In a real implementation, we would integrate multiple models:
# 1. YOLO for initial detection of UI elements
# 2. OCR for text detection
# 3. VLM for captioning and context understanding
# 4. SAM for precise segmentation
#
# Example architecture:
# ```
# def integrated_detection(image):
# # 1. Run YOLO to detect UI elements
# yolo_boxes = yolo_model(image)
#
# # 2. Run OCR to detect text
# ocr_results = ocr_model(image)
#
# # 3. Use VLM to understand the overall context
# context = vlm_model.analyze_image(image)
#
# # 4. For each detected element, use SAM for precise segmentation
# elements = []
# for box in yolo_boxes:
# # Get SAM mask
# mask = sam_model.segment(image, box)
#
# # Find overlapping text from OCR
# element_text = find_overlapping_text(box, ocr_results)
#
# # Use VLM to caption the element with context
# caption = vlm_model.caption_region(image, box, context)
#
# elements.append({
# "box": box,
# "mask": mask,
# "text": element_text,
# "caption": caption
# })
#
# return elements
# ```
# Generate some random elements
elements = []
num_elements = min(15, int(image.width * image.height / 40000)) # Scale with image size
for i in range(num_elements):
# Generate random position and size
x1 = random.randint(0, image.width - 100)
y1 = random.randint(0, image.height - 50)
width = random.randint(50, 200)
height = random.randint(30, 80)
x2 = min(x1 + width, image.width)
y2 = min(y1 + height, image.height)
# Generate random element type and caption
element_type = random.choice(element_types)
captions = {
"Button": ["Submit", "Cancel", "OK", "Apply", "Save"],
"Text Field": ["Enter text", "Username", "Password", "Search", "Email"],
"Checkbox": ["Select option", "Enable feature", "Remember me", "Agree to terms"],
"Dropdown": ["Select item", "Choose option", "Select country", "Language"],
"Menu Item": ["File", "Edit", "View", "Help", "Tools", "Settings"],
"Icon": ["Home", "Settings", "Profile", "Notification", "Search"],
"Link": ["Learn more", "Click here", "Details", "Documentation", "Help"]
}
text = random.choice(captions[element_type])
caption = f"{element_type}: {text}"
# ENHANCEMENT OPPORTUNITY: Confidence Scoring
# In a real implementation, confidence scores would be calculated based on:
# 1. Detection confidence from YOLO
# 2. Text recognition confidence from OCR
# 3. Caption confidence from VLM
# 4. Segmentation confidence from SAM
#
# Example implementation:
# ```
# def calculate_confidence(detection_conf, ocr_conf, vlm_conf, sam_conf):
# # Weighted average of confidence scores
# weights = {
# "detection": 0.4,
# "ocr": 0.2,
# "vlm": 0.3,
# "sam": 0.1
# }
#
# confidence = (
# weights["detection"] * detection_conf +
# weights["ocr"] * ocr_conf +
# weights["vlm"] * vlm_conf +
# weights["sam"] * sam_conf
# )
#
# return confidence
# ```
# Add to elements list
elements.append({
"id": i,
"text": text,
"caption": caption,
"coordinates": [x1/image.width, y1/image.height, x2/image.width, y2/image.height],
"is_interactable": element_type in ["Button", "Checkbox", "Dropdown", "Link", "Text Field"],
"confidence": random.uniform(0.7, 0.95)
})
# Draw on visualization
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
draw.text((x1, y1 - 10), f"{i}: {text}", fill="red")
# ENHANCEMENT OPPORTUNITY: Predictive Monitoring
# In a real implementation, we would verify the detected elements:
# 1. Check if the detected elements make sense in the UI context
# 2. Verify that interactive elements have appropriate labels
# 3. Ensure that the UI structure is coherent
#
# Example implementation:
# ```
# def verify_ui_elements(elements, image):
# # Use VLM to analyze the entire UI
# ui_analysis = vlm_model.analyze_ui(image)
#
# # Check if detected elements match the expected UI structure
# verified_elements = []
# for element in elements:
# # Verify element type based on appearance and context
# verified_type = verify_element_type(element, ui_analysis)
#
# # Verify interactability
# verified_interactable = verify_interactability(element, verified_type)
#
# verified_elements.append({
# **element,
# "verified_type": verified_type,
# "verified_interactable": verified_interactable
# })
#
# return verified_elements
# ```
return {
"elements": elements,
"visualization": vis_img,
"note": "This is a simplified implementation that simulates OmniParser functionality. For a real implementation, consider integrating YOLO, VLM, OCR, and SAM models as described in the code comments."
}
# API endpoint function
def api_endpoint(image):
"""
API endpoint that accepts an image and returns parsed elements
Args:
image: Uploaded image file
Returns:
JSON with parsed elements
"""
if image is None:
return json.dumps({"error": "No image provided"})
try:
# Process the image
result = process_image(image)
# Check if there was an error
if "error" in result:
return json.dumps({
"status": "error",
"error": result["error"],
"elements": []
})
# Convert visualization to base64 for JSON response
buffered = io.BytesIO()
result["visualization"].save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Create response
response = {
"status": "success",
"note": result.get("note", ""),
"elements": result["elements"],
"visualization": img_str
}
return json.dumps(response)
except Exception as e:
print(f"API endpoint error: {str(e)}")
return json.dumps({
"status": "error",
"error": f"API processing error: {str(e)}",
"elements": []
})
# Function to handle UI submission
def handle_submission(image):
"""Handle UI submission and provide appropriate feedback"""
if image is None:
return {"error": "No image provided"}, None
# Process the image
result = process_image(image)
# Return the result
if "error" in result:
return {"error": result["error"]}, result.get("visualization", None)
else:
return {
"note": result.get("note", ""),
"elements": result["elements"]
}, result["visualization"]
# Create test image if it doesn't exist
def create_test_ui_image():
"""Create a simple test UI image with buttons and text"""
# Create a new image with white background
width, height = 800, 600
image = Image.new('RGB', (width, height), color='white')
draw = ImageDraw.Draw(image)
# Try to load a font, use default if not available
try:
font = ImageFont.truetype("arial.ttf", 20)
small_font = ImageFont.truetype("arial.ttf", 16)
except IOError:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Draw a header
draw.rectangle([(0, 0), (width, 60)], fill='#4285F4')
draw.text((20, 15), "Test UI Application", fill='white', font=font)
# Draw a sidebar
draw.rectangle([(0, 60), (200, height)], fill='#F1F1F1')
# Draw menu items in sidebar
menu_items = ["Home", "Profile", "Settings", "Help", "Logout"]
for i, item in enumerate(menu_items):
y = 100 + i * 50
# Highlight one item
if item == "Settings":
draw.rectangle([(10, y-10), (190, y+30)], fill='#E1E1E1')
draw.text((20, y), item, fill='black', font=font)
# Draw main content area
draw.text((220, 80), "Welcome to the Test UI", fill='black', font=font)
# Draw a form
draw.text((220, 150), "Please enter your information:", fill='black', font=font)
# Draw form fields
fields = ["Name", "Email", "Phone"]
for i, field in enumerate(fields):
y = 200 + i * 60
draw.text((220, y), f"{field}:", fill='black', font=font)
draw.rectangle([(320, y-5), (700, y+25)], outline='black')
# Draw buttons
draw.rectangle([(220, 400), (320, 440)], fill='#4285F4')
draw.text((240, 410), "Submit", fill='white', font=font)
draw.rectangle([(340, 400), (440, 440)], fill='#9E9E9E')
draw.text((360, 410), "Cancel", fill='white', font=font)
# Draw a checkbox
draw.rectangle([(220, 470), (240, 490)], outline='black')
draw.text((250, 470), "Remember me", fill='black', font=small_font)
# Save the image
os.makedirs("static", exist_ok=True)
image_path = "static/test_ui.png"
image.save(image_path)
print(f"Test UI image created at {image_path}")
return image_path
# Create test image if it doesn't exist
try:
if not os.path.exists("static/test_ui.png"):
print("Creating test UI image...")
test_image_path = create_test_ui_image()
print(f"Test image created at {test_image_path}")
except Exception as e:
print(f"Error creating test image: {str(e)}")
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# OmniParser v2.0 API (Simplified Version)
Upload an image to parse UI elements and get structured data.
## Quick Start
You can use the [test UI image](/file=static/test_ui.png) to try out the API, or upload your own UI screenshot.
## API Usage
You can use this API by sending a POST request with a file upload to this URL.
```python
import requests
# Replace with your actual API URL after deployment
OMNIPARSER_API_URL = "https://your-username-omniparser-api.hf.space/api/parse"
# Upload a file
files = {'image': open('screenshot.png', 'rb')}
# Send request
response = requests.post(OMNIPARSER_API_URL, files=files)
# Get JSON result
result = response.json()
```
## Note
This is a simplified version that simulates OmniParser functionality. It does not use the actual OmniParser models.
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil', label='Upload image')
# Function to load test image
def load_test_image():
if os.path.exists("static/test_ui.png"):
return Image.open("static/test_ui.png")
return None
test_image_button = gr.Button(value='Load Test Image')
test_image_button.click(fn=load_test_image, inputs=[], outputs=[image_input])
submit_button = gr.Button(value='Parse Image', variant='primary')
# Status message
status = gr.Markdown("⚠️ OmniParser v2.0 API - Running in simplified mode (without actual models)")
with gr.Column():
json_output = gr.JSON(label='Parsed Elements (JSON)')
image_output = gr.Image(type='pil', label='Visualization')
# Connect the interface
submit_button.click(
fn=handle_submission,
inputs=[image_input],
outputs=[json_output, image_output],
api_name="parse" # This creates the /api/parse endpoint
)
# Launch the app
demo.launch()