omniparser-api / app.py
Netrava's picture
Upload 4 files
18315be verified
import os
import io
import json
import base64
import gradio as gr
import numpy as np
import torch
import subprocess
import sys
from PIL import Image
from huggingface_hub import hf_hub_download
from typing import Optional, Dict, Any, List, Union
# Setup OmniParser repository and models
def setup_omniparser():
"""Clone OmniParser repository and download model weights"""
try:
# Check if OmniParser repository exists
if not os.path.exists("OmniParser"):
print("Cloning OmniParser repository...")
subprocess.run(["git", "clone", "https://github.com/microsoft/OmniParser.git"], check=True)
# Add OmniParser to Python path
omniparser_path = os.path.abspath("OmniParser")
if omniparser_path not in sys.path:
sys.path.append(omniparser_path)
print(f"Added {omniparser_path} to Python path")
# Create weights directory
os.makedirs("OmniParser/weights/icon_detect", exist_ok=True)
os.makedirs("OmniParser/weights/icon_caption_florence", exist_ok=True)
# Download model weights if they don't exist
if not os.path.exists("OmniParser/weights/icon_detect/model.pt") or not os.path.exists("OmniParser/weights/icon_caption_florence/model.safetensors"):
print("Downloading model weights...")
# Download detection model files
for f in ["train_args.yaml", "model.pt", "model.yaml"]:
hf_hub_download(
repo_id="microsoft/OmniParser-v2.0",
filename=f"icon_detect/{f}",
local_dir="OmniParser/weights"
)
# Download caption model files
for f in ["config.json", "generation_config.json", "model.safetensors"]:
hf_hub_download(
repo_id="microsoft/OmniParser-v2.0",
filename=f"icon_caption/{f}",
local_dir="OmniParser/weights"
)
# Rename the caption folder to match expected path
if os.path.exists("OmniParser/weights/icon_caption") and not os.path.exists("OmniParser/weights/icon_caption_florence"):
os.rename("OmniParser/weights/icon_caption", "OmniParser/weights/icon_caption_florence")
# Patch PaddleOCR initialization in utils.py to fix compatibility issue
utils_path = os.path.join(omniparser_path, "util", "utils.py")
if os.path.exists(utils_path):
print("Patching utils.py to fix compatibility issues...")
# Create a simplified version of utils.py with essential functions
simplified_utils = """import os
import io
import cv2
import base64
import numpy as np
import torch
from PIL import Image, ImageDraw
def check_ocr_box(image, display_img=False, output_bb_format='xyxy', goal_filtering=None,
easyocr_args=None, use_paddleocr=True):
"""
Custom implementation of check_ocr_box that uses EasyOCR
"""
try:
import easyocr
# Convert PIL Image to numpy array
img_np = np.array(image)
# Initialize EasyOCR
reader = easyocr.Reader(['en'])
# Run OCR
results = reader.readtext(img_np)
# Extract text and bounding boxes
texts = []
boxes = []
for result in results:
box, text, _ = result
texts.append(text)
# Convert box format if needed
if output_bb_format == 'xyxy':
# Convert from [[x1,y1],[x2,y2],[x3,y3],[x4,y4]] to [x1,y1,x3,y3]
x1, y1 = box[0]
x3, y3 = box[2]
boxes.append([x1, y1, x3, y3])
else:
boxes.append(box)
return (texts, boxes), False
except Exception as e:
print(f"Error in OCR: {str(e)}")
return ([], []), False
def get_yolo_model(model_path):
"""
Load YOLO model for icon detection
"""
try:
from ultralytics import YOLO
model = YOLO(model_path)
return model
except Exception as e:
print(f"Error loading YOLO model: {str(e)}")
return None
def get_caption_model_processor(model_name, model_name_or_path):
"""
Load caption model and processor
"""
try:
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.float16,
device_map="auto"
)
return (model, processor)
except Exception as e:
print(f"Error loading caption model: {str(e)}")
return None
def get_som_labeled_img(image, yolo_model, BOX_TRESHOLD=0.05, output_coord_in_ratio=True,
ocr_bbox=None, draw_bbox_config=None, caption_model_processor=None,
ocr_text=None, iou_threshold=0.1, imgsz=640):
"""
Simplified implementation of get_som_labeled_img
"""
try:
# Create a copy of the image for visualization
vis_img = image.copy()
draw = ImageDraw.Draw(vis_img)
# Run YOLO detection
results = yolo_model(image, imgsz=imgsz)
# Process results
elements = []
for i, det in enumerate(results[0].boxes.data):
x1, y1, x2, y2, conf, cls = det
if conf < BOX_TRESHOLD:
continue
# Draw bounding box
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
# Generate caption
caption = f"UI Element {i}"
# Add to elements list
elements.append({
"id": i,
"text": "",
"caption": caption,
"coordinates": [x1/image.width, y1/image.height, x2/image.width, y2/image.height],
"is_interactable": True,
"confidence": float(conf)
})
# Convert to base64
buffered = io.BytesIO()
vis_img.save(buffered, format="PNG")
img_str = "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode()
return img_str, [], elements
except Exception as e:
print(f"Error in get_som_labeled_img: {str(e)}")
return "Error processing image", [], []
"""
# Write the simplified utils.py
with open(utils_path, 'w') as f:
f.write(simplified_utils)
print("Created simplified utils.py with essential functions")
print("OmniParser setup completed successfully!")
return True
except Exception as e:
print(f"Error setting up OmniParser: {str(e)}")
return False
# Setup OmniParser
setup_success = setup_omniparser()
# Create our own implementation of check_ocr_box to avoid PaddleOCR issues
def custom_check_ocr_box(image, display_img=False, output_bb_format='xyxy', goal_filtering=None,
easyocr_args=None, use_paddleocr=True):
"""
Custom implementation of check_ocr_box that doesn't rely on PaddleOCR
"""
print("Using custom OCR implementation (EasyOCR only)")
try:
import easyocr
import numpy as np
# Convert PIL Image to numpy array
img_np = np.array(image)
# Initialize EasyOCR
reader = easyocr.Reader(['en'])
# Run OCR
results = reader.readtext(img_np)
# Extract text and bounding boxes
texts = []
boxes = []
for result in results:
box, text, _ = result
texts.append(text)
# Convert box format if needed
if output_bb_format == 'xyxy':
# Convert from [[x1,y1],[x2,y2],[x3,y3],[x4,y4]] to [x1,y1,x3,y3]
x1, y1 = box[0]
x3, y3 = box[2]
boxes.append([x1, y1, x3, y3])
else:
boxes.append(box)
return (texts, boxes), False
except Exception as e:
print(f"Error in custom OCR: {str(e)}")
return ([], []), False
# Import OmniParser utilities
if setup_success:
try:
# First try to import the patched version
from OmniParser.util.utils import get_yolo_model, get_caption_model_processor, get_som_labeled_img
# Try to import check_ocr_box, but use our custom version if it fails
try:
from OmniParser.util.utils import check_ocr_box
print("Successfully imported all OmniParser utilities")
except (ImportError, ValueError) as e:
print(f"Using custom OCR implementation due to error: {str(e)}")
check_ocr_box = custom_check_ocr_box
except ImportError as e:
print(f"Error importing OmniParser utilities: {str(e)}")
# Fallback to a simple error message
def error_message(*args, **kwargs):
return "Error: OmniParser utilities could not be imported. Please check the logs."
# Create dummy functions that return error messages
check_ocr_box = get_yolo_model = get_caption_model_processor = get_som_labeled_img = error_message
else:
print("Using dummy functions due to setup failure")
# Create dummy functions that return error messages
def error_message(*args, **kwargs):
return "Error: OmniParser setup failed. Please check the logs."
check_ocr_box = get_yolo_model = get_caption_model_processor = get_som_labeled_img = error_message
# Initialize models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Initialize models with correct paths
try:
# YOLO model for object detection
yolo_model = get_yolo_model(model_path='OmniParser/weights/icon_detect/model.pt')
# VLM (Vision Language Model) for captioning
caption_model_processor = get_caption_model_processor(
model_name="florence2",
model_name_or_path="OmniParser/weights/icon_caption_florence"
)
print("Models initialized successfully")
models_initialized = True
# ENHANCEMENT OPPORTUNITY: Data Fusion
# The current implementation uses YOLO for detection and VLM for captioning separately.
# A more integrated approach could:
# 1. Use YOLO for initial detection of UI elements
# 2. Use VLM to refine the detections and provide more context
# 3. Implement a confidence-based merging strategy for overlapping detections
# 4. Use SAM (Segment Anything Model) for more precise segmentation of UI elements
#
# Example implementation:
# ```
# def enhanced_detection(image, yolo_model, vlm_model, sam_model):
# # Get YOLO detections
# yolo_boxes = yolo_model(image)
#
# # Use VLM to analyze the entire image for context
# global_context = vlm_model.analyze_image(image)
#
# # For each YOLO box, use VLM to get more detailed information
# refined_detections = []
# for box in yolo_boxes:
# # Crop the region
# region = crop_image(image, box)
#
# # Get VLM description
# description = vlm_model.describe_region(region, context=global_context)
#
# # Use SAM for precise segmentation
# mask = sam_model.segment(image, box)
#
# refined_detections.append({
# "box": box,
# "description": description,
# "mask": mask,
# "confidence": combine_confidence(box.conf, description.conf)
# })
#
# return refined_detections
# ```
except Exception as e:
print(f"Error initializing models: {str(e)}")
# Create dummy models for graceful failure
yolo_model = None
caption_model_processor = None
models_initialized = False
# Fallback implementation for when OmniParser fails
def fallback_process_image(image):
"""
Fallback implementation that simulates OmniParser functionality
for when the actual models fail to load
"""
from PIL import Image, ImageDraw, ImageFont
import random
# Create a copy of the image for visualization
vis_img = image.copy()
draw = ImageDraw.Draw(vis_img)
# Define some mock UI element types
element_types = ["Button", "Text Field", "Checkbox", "Dropdown", "Menu Item", "Icon", "Link"]
# Generate some random elements
elements = []
num_elements = min(10, int(image.width * image.height / 50000)) # Scale with image size
for i in range(num_elements):
# Generate random position and size
x1 = random.randint(0, image.width - 100)
y1 = random.randint(0, image.height - 50)
width = random.randint(50, 200)
height = random.randint(30, 80)
x2 = min(x1 + width, image.width)
y2 = min(y1 + height, image.height)
# Generate random element type and caption
element_type = random.choice(element_types)
captions = {
"Button": ["Submit", "Cancel", "OK", "Apply", "Save"],
"Text Field": ["Enter text", "Username", "Password", "Search", "Email"],
"Checkbox": ["Select option", "Enable feature", "Remember me", "Agree to terms"],
"Dropdown": ["Select item", "Choose option", "Select country", "Language"],
"Menu Item": ["File", "Edit", "View", "Help", "Tools", "Settings"],
"Icon": ["Home", "Settings", "Profile", "Notification", "Search"],
"Link": ["Learn more", "Click here", "Details", "Documentation", "Help"]
}
text = random.choice(captions[element_type])
caption = f"{element_type}: {text}"
# Add to elements list
elements.append({
"id": i,
"text": text,
"caption": caption,
"coordinates": [x1/image.width, y1/image.height, x2/image.width, y2/image.height],
"is_interactable": element_type in ["Button", "Checkbox", "Dropdown", "Link", "Text Field"],
"confidence": random.uniform(0.7, 0.95)
})
# Draw on visualization
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
draw.text((x1, y1 - 10), f"{i}: {text}", fill="red")
return {
"elements": elements,
"visualization": vis_img,
"note": "This is a fallback visualization as OmniParser models could not be loaded."
}
def process_image(
image: Image.Image,
box_threshold: float = 0.05,
iou_threshold: float = 0.1,
use_paddleocr: bool = True,
imgsz: int = 640
) -> Dict[str, Any]:
"""
Process an image with OmniParser and return structured data
Args:
image: PIL Image to process
box_threshold: Threshold for bounding box confidence
iou_threshold: Threshold for IOU overlap
use_paddleocr: Whether to use PaddleOCR for text detection
imgsz: Image size for icon detection
Returns:
Dictionary with parsed elements and visualization
"""
# Check if models are initialized
if not models_initialized or yolo_model is None or caption_model_processor is None:
print("Models not initialized properly, using fallback implementation")
return fallback_process_image(image)
try:
# Calculate overlay ratio based on image size
box_overlay_ratio = image.size[0] / 3200
# Configure drawing parameters
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
# Run OCR to detect text
try:
# ENHANCEMENT OPPORTUNITY: OCR Integration
# The current implementation uses OCR separately from YOLO detection.
# A more integrated approach could:
# 1. Use OCR results to refine YOLO detections
# 2. Merge overlapping text and UI element detections
# 3. Use text content to improve element classification
#
# Example implementation:
# ```
# def integrated_ocr_detection(image, ocr_results, yolo_detections):
# merged_detections = []
#
# # For each YOLO detection
# for yolo_box in yolo_detections:
# # Find overlapping OCR text
# overlapping_text = []
# for text, text_box in ocr_results:
# if calculate_iou(yolo_box, text_box) > threshold:
# overlapping_text.append(text)
#
# # Use text content to refine element classification
# element_type = classify_element_with_text(yolo_box, overlapping_text)
#
# merged_detections.append({
# "box": yolo_box,
# "text": " ".join(overlapping_text),
# "type": element_type
# })
#
# return merged_detections
# ```
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
image,
display_img=False,
output_bb_format='xyxy',
goal_filtering=None,
easyocr_args={'paragraph': False, 'text_threshold': 0.9},
use_paddleocr=use_paddleocr
)
# Check if OCR returned an error message (string)
if isinstance(ocr_bbox_rslt, str):
print(f"OCR error: {ocr_bbox_rslt}, using fallback implementation")
return fallback_process_image(image)
text, ocr_bbox = ocr_bbox_rslt
except Exception as e:
print(f"OCR error: {str(e)}, using fallback implementation")
return fallback_process_image(image)
# Process image with OmniParser
try:
# ENHANCEMENT OPPORTUNITY: SAM Integration
# The current implementation doesn't use SAM (Segment Anything Model).
# Integrating SAM could:
# 1. Provide more precise segmentation of UI elements
# 2. Better handle complex UI layouts with overlapping elements
# 3. Improve detection of irregular-shaped elements
#
# Example implementation:
# ```
# def integrate_sam(image, boxes, sam_model):
# # Initialize SAM predictor
# predictor = SamPredictor(sam_model)
# predictor.set_image(np.array(image))
#
# refined_elements = []
# for box in boxes:
# # Convert box to SAM input format
# input_box = np.array([box[0], box[1], box[2], box[3]])
#
# # Get SAM mask
# masks, scores, _ = predictor.predict(
# box=input_box,
# multimask_output=False
# )
#
# # Use the mask to refine the element boundaries
# refined_elements.append({
# "box": box,
# "mask": masks[0],
# "mask_confidence": scores[0]
# })
#
# return refined_elements
# ```
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
image,
yolo_model,
BOX_TRESHOLD=box_threshold,
output_coord_in_ratio=True,
ocr_bbox=ocr_bbox,
draw_bbox_config=draw_bbox_config,
caption_model_processor=caption_model_processor,
ocr_text=text,
iou_threshold=iou_threshold,
imgsz=imgsz
)
# Check if get_som_labeled_img returned an error message (string)
if isinstance(dino_labled_img, str) and not dino_labled_img.startswith("data:"):
print(f"OmniParser error: {dino_labled_img}, using fallback implementation")
return fallback_process_image(image)
# Convert base64 image to PIL Image
visualization = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
# Create structured output
elements = []
for i, element in enumerate(parsed_content_list):
# ENHANCEMENT OPPORTUNITY: Confidence Scoring
# The current implementation uses a simple confidence score.
# A more sophisticated approach could:
# 1. Combine confidence scores from multiple models (YOLO, VLM, OCR)
# 2. Consider element context and relationships
# 3. Use historical data to improve confidence scoring
#
# Example implementation:
# ```
# def calculate_confidence(yolo_conf, vlm_conf, ocr_conf, element_type):
# # Base confidence from YOLO
# base_conf = yolo_conf
#
# # Adjust based on VLM confidence
# if vlm_conf > 0.8:
# base_conf = (base_conf + vlm_conf) / 2
#
# # Adjust based on element type
# if element_type == "button" and ocr_conf > 0.9:
# base_conf = (base_conf + ocr_conf) / 2
#
# # Normalize to 0-1 range
# return min(1.0, base_conf)
# ```
elements.append({
"id": i,
"text": element.get("text", ""),
"caption": element.get("caption", ""),
"coordinates": element.get("coordinates", []),
"is_interactable": element.get("is_interactable", False),
"confidence": element.get("confidence", 0.0)
})
# ENHANCEMENT OPPORTUNITY: Predictive Monitoring
# The current implementation doesn't include predictive monitoring.
# Adding this could:
# 1. Verify that detected elements make sense in the UI context
# 2. Identify missing or incorrectly detected elements
# 3. Provide feedback for improving detection accuracy
#
# Example implementation:
# ```
# def verify_detections(elements, image, vlm_model):
# # Use VLM to analyze the entire image
# global_description = vlm_model.describe_image(image)
#
# # Check if detected elements match the global description
# expected_elements = extract_expected_elements(global_description)
#
# # Compare detected vs expected
# missing_elements = [e for e in expected_elements if not any(
# similar_element(e, detected) for detected in elements
# )]
#
# # Provide feedback
# return {
# "verified_elements": elements,
# "missing_elements": missing_elements,
# "confidence": calculate_overall_confidence(elements, expected_elements)
# }
# ```
# Return structured data and visualization
return {
"elements": elements,
"visualization": visualization
}
except Exception as e:
print(f"OmniParser error: {str(e)}, using fallback implementation")
return fallback_process_image(image)
except Exception as e:
print(f"Error processing image: {str(e)}, using fallback implementation")
# Use fallback implementation
return fallback_process_image(image)
# API endpoint function
def api_endpoint(image):
"""
API endpoint that accepts an image and returns parsed elements
Args:
image: Uploaded image file
Returns:
JSON with parsed elements
"""
if image is None:
return json.dumps({"error": "No image provided"})
try:
# Process the image
result = process_image(image)
# Check if there was an error
if "error" in result:
return json.dumps({
"status": "error",
"error": result["error"],
"elements": []
})
# Convert visualization to base64 for JSON response
buffered = io.BytesIO()
result["visualization"].save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Create response
response = {
"status": "success",
"elements": result["elements"],
"visualization": img_str
}
return json.dumps(response)
except Exception as e:
print(f"API endpoint error: {str(e)}")
return json.dumps({
"status": "error",
"error": f"API processing error: {str(e)}",
"elements": []
})
# Function to handle UI submission
def handle_submission(image, box_threshold=0.05, iou_threshold=0.1, use_paddleocr=True, imgsz=640):
"""Handle UI submission and provide appropriate feedback"""
if image is None:
return {"error": "No image provided"}, None
# Process the image
result = process_image(
image,
box_threshold=box_threshold,
iou_threshold=iou_threshold,
use_paddleocr=use_paddleocr,
imgsz=imgsz
)
# Return the result
if "error" in result:
return {"error": result["error"]}, result.get("visualization", None)
elif "note" in result:
# This is from the fallback implementation
return {
"note": result["note"],
"elements": result["elements"]
}, result["visualization"]
else:
return {"elements": result["elements"]}, result["visualization"]
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# OmniParser v2.0 API
Upload an image to parse UI elements and get structured data.
## Quick Start
You can use the [test UI image](/file=static/test_ui.png) to try out the API, or upload your own UI screenshot.
## API Usage
You can use this API by sending a POST request with a file upload to this URL.
```python
import requests
# Replace with your actual API URL after deployment
OMNIPARSER_API_URL = "https://your-username-omniparser-api.hf.space/api/parse"
# Upload a file
files = {'image': open('screenshot.png', 'rb')}
# Send request
response = requests.post(OMNIPARSER_API_URL, files=files)
# Get JSON result
result = response.json()
```
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil', label='Upload image')
# Function to load test image
def load_test_image():
if os.path.exists("static/test_ui.png"):
return Image.open("static/test_ui.png")
return None
test_image_button = gr.Button(value='Load Test Image')
test_image_button.click(fn=load_test_image, inputs=[], outputs=[image_input])
with gr.Accordion("Advanced Options", open=False):
box_threshold = gr.Slider(
label='Box Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
iou_threshold = gr.Slider(
label='IOU Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.1
)
use_paddleocr = gr.Checkbox(
label='Use PaddleOCR',
value=True
)
imgsz = gr.Slider(
label='Icon Detect Image Size',
minimum=640,
maximum=1920,
step=32,
value=640
)
submit_button = gr.Button(value='Parse Image', variant='primary')
# Status message
status = gr.Markdown("Ready to parse images")
with gr.Column():
json_output = gr.JSON(label='Parsed Elements (JSON)')
image_output = gr.Image(type='pil', label='Visualization')
# Connect the interface
submit_button.click(
fn=handle_submission,
inputs=[image_input, box_threshold, iou_threshold, use_paddleocr, imgsz],
outputs=[json_output, image_output],
api_name="parse" # This creates the /api/parse endpoint
)
# Function to get status
def get_status():
if models_initialized:
return f"✅ OmniParser v2.0 API - Running on {'GPU' if torch.cuda.is_available() else 'CPU'}"
else:
return "⚠️ OmniParser v2.0 API - Running in fallback mode (models not loaded)"
# Update status on load
demo.load(
fn=get_status,
outputs=status
)
# Create test image if it doesn't exist
try:
if not os.path.exists("static/test_ui.png"):
print("Creating test UI image...")
from create_test_image import create_test_ui_image
test_image_path = create_test_ui_image()
print(f"Test image created at {test_image_path}")
except Exception as e:
print(f"Error creating test image: {str(e)}")
# Launch the app
demo.launch()