Leo Liu
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
from transformers import pipeline, AutoTokenizer,
|
| 4 |
import torchaudio
|
| 5 |
import os
|
| 6 |
-
import re
|
| 7 |
import jieba
|
| 8 |
|
| 9 |
-
# Device setup:
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
-
#
|
| 13 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
| 14 |
language = "zh"
|
| 15 |
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
|
| 16 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
| 17 |
|
|
|
|
| 18 |
def transcribe_audio(audio_path):
|
| 19 |
-
"""
|
| 20 |
-
对音频文件进行转录,支持大于60秒的音频分段处理
|
| 21 |
-
"""
|
| 22 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 23 |
duration = waveform.shape[1] / sample_rate
|
| 24 |
if duration > 60:
|
|
@@ -34,33 +31,11 @@ def transcribe_audio(audio_path):
|
|
| 34 |
return " ".join(results)
|
| 35 |
return pipe(audio_path)["text"]
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("botisan-ai/mt5-translate-yue-zh").to(device)
|
| 40 |
-
|
| 41 |
-
def split_sentences(text):
|
| 42 |
-
"""根据中文标点分割句子"""
|
| 43 |
-
return [s for s in re.split(r'(?<=[。!?])', text) if s]
|
| 44 |
-
|
| 45 |
-
def translate(text):
|
| 46 |
-
"""
|
| 47 |
-
将转录文本翻译为中文,逐句翻译后拼接输出
|
| 48 |
-
"""
|
| 49 |
-
sentences = split_sentences(text)
|
| 50 |
-
translations = []
|
| 51 |
-
for sentence in sentences:
|
| 52 |
-
inputs = tokenizer(sentence, return_tensors="pt").to(device)
|
| 53 |
-
outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
|
| 54 |
-
translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 55 |
-
return " ".join(translations)
|
| 56 |
-
|
| 57 |
-
# 加载质量评分模型,用于评价对话质量
|
| 58 |
-
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")
|
| 59 |
|
|
|
|
| 60 |
def split_text(text, max_length=512):
|
| 61 |
-
"""
|
| 62 |
-
将文本按照最大长度拆分成多个片段,使用 jieba 分词
|
| 63 |
-
"""
|
| 64 |
words = list(jieba.cut(text))
|
| 65 |
chunks, current_chunk = [], ""
|
| 66 |
for word in words:
|
|
@@ -73,23 +48,21 @@ def split_text(text, max_length=512):
|
|
| 73 |
chunks.append(current_chunk)
|
| 74 |
return chunks
|
| 75 |
|
|
|
|
| 76 |
def rate_quality(text):
|
| 77 |
-
"""
|
| 78 |
-
对翻译后的文本进行质量评价,返回最频繁的评分结果
|
| 79 |
-
"""
|
| 80 |
chunks = split_text(text)
|
| 81 |
results = []
|
| 82 |
for chunk in chunks:
|
| 83 |
-
result =
|
| 84 |
-
label_map = {"
|
| 85 |
results.append(label_map.get(result["label"], "Unknown"))
|
| 86 |
return max(set(results), key=results.count)
|
| 87 |
|
|
|
|
| 88 |
def main():
|
| 89 |
-
# 设置页面配置和图标,吸引用户注意
|
| 90 |
st.set_page_config(page_title="Customer Service Quality Analyzer", page_icon="🎙️")
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
st.markdown("""
|
| 94 |
<style>
|
| 95 |
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
|
@@ -113,49 +86,39 @@ def main():
|
|
| 113 |
}
|
| 114 |
</style>
|
| 115 |
""", unsafe_allow_html=True)
|
| 116 |
-
|
| 117 |
-
#
|
| 118 |
st.markdown("""
|
| 119 |
<div class="header">
|
| 120 |
<h1 style='margin:0;'>🎙️ Customer Service Quality Analyzer</h1>
|
| 121 |
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple-uploading!</p>
|
| 122 |
</div>
|
| 123 |
""", unsafe_allow_html=True)
|
| 124 |
-
|
| 125 |
-
#
|
| 126 |
uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
|
| 127 |
-
|
| 128 |
if uploaded_file is not None:
|
| 129 |
-
# 直接播放上传的音频
|
| 130 |
st.audio(uploaded_file, format="audio/wav")
|
| 131 |
-
# 将上传的文件保存为临时文件
|
| 132 |
temp_audio_path = "uploaded_audio.wav"
|
| 133 |
with open(temp_audio_path, "wb") as f:
|
| 134 |
f.write(uploaded_file.getbuffer())
|
| 135 |
-
|
| 136 |
-
# 初始化进度条和状态提示区域
|
| 137 |
progress_bar = st.progress(0)
|
| 138 |
status_container = st.empty()
|
| 139 |
-
|
| 140 |
-
# Step 1:
|
| 141 |
-
status_container.info("📝 **Step 1/
|
| 142 |
transcript = transcribe_audio(temp_audio_path)
|
| 143 |
-
progress_bar.progress(
|
| 144 |
st.write("**Transcript:**", transcript)
|
| 145 |
-
|
| 146 |
-
# Step 2:
|
| 147 |
-
status_container.info("
|
| 148 |
-
|
| 149 |
-
progress_bar.progress(66)
|
| 150 |
-
st.write("**Translation:**", translated_text)
|
| 151 |
-
|
| 152 |
-
# Step 3: 音频质量评分
|
| 153 |
-
status_container.info("🧑⚖️ **Step 3/3**: Evaluating audio quality...")
|
| 154 |
-
quality_rating = rate_quality(translated_text)
|
| 155 |
progress_bar.progress(100)
|
| 156 |
-
st.write("**
|
| 157 |
-
|
| 158 |
-
# 处理完成后删除临时文件
|
| 159 |
os.remove(temp_audio_path)
|
| 160 |
|
| 161 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torchaudio
|
| 5 |
import os
|
|
|
|
| 6 |
import jieba
|
| 7 |
|
| 8 |
+
# Device setup: automatically selects CUDA or CPU
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
+
# Load Whisper model for Cantonese audio transcription
|
| 12 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
| 13 |
language = "zh"
|
| 14 |
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
|
| 15 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
| 16 |
|
| 17 |
+
# Transcription function (supports long audio)
|
| 18 |
def transcribe_audio(audio_path):
|
|
|
|
|
|
|
|
|
|
| 19 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 20 |
duration = waveform.shape[1] / sample_rate
|
| 21 |
if duration > 60:
|
|
|
|
| 31 |
return " ".join(results)
|
| 32 |
return pipe(audio_path)["text"]
|
| 33 |
|
| 34 |
+
# Load sentiment analysis model (Custom multilingual sentiment analysis)
|
| 35 |
+
sentiment_pipe = pipeline("text-classification", model="CustomModel-multilingual-sentiment-analysis", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Text splitting function (using jieba for Chinese text)
|
| 38 |
def split_text(text, max_length=512):
|
|
|
|
|
|
|
|
|
|
| 39 |
words = list(jieba.cut(text))
|
| 40 |
chunks, current_chunk = [], ""
|
| 41 |
for word in words:
|
|
|
|
| 48 |
chunks.append(current_chunk)
|
| 49 |
return chunks
|
| 50 |
|
| 51 |
+
# Function to rate sentiment quality based on most frequent result
|
| 52 |
def rate_quality(text):
|
|
|
|
|
|
|
|
|
|
| 53 |
chunks = split_text(text)
|
| 54 |
results = []
|
| 55 |
for chunk in chunks:
|
| 56 |
+
result = sentiment_pipe(chunk)[0]
|
| 57 |
+
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
| 58 |
results.append(label_map.get(result["label"], "Unknown"))
|
| 59 |
return max(set(results), key=results.count)
|
| 60 |
|
| 61 |
+
# Streamlit main interface
|
| 62 |
def main():
|
|
|
|
| 63 |
st.set_page_config(page_title="Customer Service Quality Analyzer", page_icon="🎙️")
|
| 64 |
+
|
| 65 |
+
# Custom CSS styling
|
| 66 |
st.markdown("""
|
| 67 |
<style>
|
| 68 |
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
|
|
|
| 86 |
}
|
| 87 |
</style>
|
| 88 |
""", unsafe_allow_html=True)
|
| 89 |
+
|
| 90 |
+
# Header
|
| 91 |
st.markdown("""
|
| 92 |
<div class="header">
|
| 93 |
<h1 style='margin:0;'>🎙️ Customer Service Quality Analyzer</h1>
|
| 94 |
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple-uploading!</p>
|
| 95 |
</div>
|
| 96 |
""", unsafe_allow_html=True)
|
| 97 |
+
|
| 98 |
+
# Audio file uploader
|
| 99 |
uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
|
| 100 |
+
|
| 101 |
if uploaded_file is not None:
|
|
|
|
| 102 |
st.audio(uploaded_file, format="audio/wav")
|
|
|
|
| 103 |
temp_audio_path = "uploaded_audio.wav"
|
| 104 |
with open(temp_audio_path, "wb") as f:
|
| 105 |
f.write(uploaded_file.getbuffer())
|
| 106 |
+
|
|
|
|
| 107 |
progress_bar = st.progress(0)
|
| 108 |
status_container = st.empty()
|
| 109 |
+
|
| 110 |
+
# Step 1: Audio transcription
|
| 111 |
+
status_container.info("📝 **Step 1/2**: Transcribing audio...")
|
| 112 |
transcript = transcribe_audio(temp_audio_path)
|
| 113 |
+
progress_bar.progress(50)
|
| 114 |
st.write("**Transcript:**", transcript)
|
| 115 |
+
|
| 116 |
+
# Step 2: Sentiment Analysis
|
| 117 |
+
status_container.info("🧑⚖️ **Step 2/2**: Evaluating sentiment quality...")
|
| 118 |
+
quality_rating = rate_quality(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
progress_bar.progress(100)
|
| 120 |
+
st.write("**Sentiment Rating:**", quality_rating)
|
| 121 |
+
|
|
|
|
| 122 |
os.remove(temp_audio_path)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|