Spaces:
Sleeping
Sleeping
File size: 54,195 Bytes
07195ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 |
import json, os, re, uuid, subprocess, sys, time, traceback, threading, base64
from io import BytesIO
from collections import deque
from pathlib import Path
from typing import Optional, Tuple, List, Dict, Any
from dataclasses import dataclass, field
from contextlib import contextmanager
from fastapi import FastAPI, HTTPException, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, validator
from huggingface_hub import HfApi, create_repo, CommitOperationAdd
# Optional .env for local testing
from dotenv import load_dotenv
load_dotenv()
# -------- Gemini + GPT client setup --------
from google import genai
from google.genai import types
try:
from openai import OpenAI
except ImportError:
OpenAI = None
# We keep the GEMINI_* env vars for compatibility.
API_KEY = os.getenv("GEMINI_API_KEY", "")
MODEL = os.getenv("GEMINI_MODEL", "gemini-2.5-pro")
GEMINI_SMALL_MODEL = os.getenv("GEMINI_SMALL_MODEL")
DEFAULT_OPENAI_SMALL_MODEL = "gpt-4o-mini"
OPENAI_SMALL_MODEL = os.getenv("OPENAI_SMALL_MODEL") or DEFAULT_OPENAI_SMALL_MODEL
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
_OPENAI_ENV = os.getenv("USE_OPENAI")
if _OPENAI_ENV is None:
USE_OPENAI = bool(OPENAI_API_KEY)
else:
USE_OPENAI = _OPENAI_ENV.lower() == "true"
PORT = int(os.getenv("PORT", "7860"))
_OPENAI_RESPONSES_MODELS_ENV = os.getenv("OPENAI_RESPONSES_MODELS", "")
RESPONSES_API_MODEL_NAMES = {"gpt-5-mini"}
if _OPENAI_RESPONSES_MODELS_ENV:
RESPONSES_API_MODEL_NAMES.update(
model.strip().lower()
for model in _OPENAI_RESPONSES_MODELS_ENV.split(",")
if model.strip()
)
_OPENAI_RESPONSES_PREFIXES_ENV = os.getenv("OPENAI_RESPONSES_PREFIXES", "")
_RESPONSES_API_MODEL_PREFIXES = ["gpt-5"]
if _OPENAI_RESPONSES_PREFIXES_ENV:
_RESPONSES_API_MODEL_PREFIXES.extend(
prefix.strip().lower()
for prefix in _OPENAI_RESPONSES_PREFIXES_ENV.split(",")
if prefix.strip()
)
RESPONSES_API_MODEL_PREFIXES = tuple(_RESPONSES_API_MODEL_PREFIXES)
RESPONSES_API_ERROR_HINTS = (
"only supported in v1/responses",
"use the responses api",
"use the responses endpoint",
"please call the responses api",
"please use the responses endpoint",
)
gemini_client = genai.Client(api_key=API_KEY) if API_KEY else None
gpt_client = OpenAI(api_key=OPENAI_API_KEY) if (OPENAI_API_KEY and OpenAI and USE_OPENAI) else None
# -------- FastAPI app --------
app = FastAPI(title="Manim Render API (error + visual refine)")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # tighten in prod
allow_methods=["*"],
allow_headers=["*"],
)
RUNS = Path("runs"); RUNS.mkdir(parents=True, exist_ok=True)
HF_DATASET_ID = os.getenv("HF_DATASET_ID", "MathFrames/email-log")
HF_TOKEN = os.getenv("HF_TOKEN", "")
hf_api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
if hf_api:
try:
create_repo(
HF_DATASET_ID,
repo_type="dataset",
private=True,
exist_ok=True,
token=HF_TOKEN,
)
except Exception:
# Ignore startup race/permission errors; individual writes will surface issues.
pass
# ---------------- simple 10 RPM rate limiter ----------------
class RateLimiter:
def __init__(self, max_per_minute: int):
self.max = max_per_minute
self.lock = threading.Lock()
self.events = deque() # timestamps (time.time())
def acquire(self):
with self.lock:
now = time.time()
# drop events older than 60s
while self.events and now - self.events[0] >= 60:
self.events.popleft()
if len(self.events) < self.max:
self.events.append(now)
return
# need to wait until the oldest is 60s old
wait_for = 60 - (now - self.events[0])
if wait_for > 0:
time.sleep(wait_for + 0.01)
# recurse once to record post-sleep
self.acquire()
limiter = RateLimiter(10)
storyboard_limiter = RateLimiter(30)
RENDER_LOCK = threading.Lock()
@contextmanager
def acquire_render_slot(timeout: Optional[float] = None):
"""
Global render queue: only one Manim render runs at a time.
Blocks until the lock is available (optional timeout).
"""
if timeout is None:
acquired = RENDER_LOCK.acquire()
else:
acquired = RENDER_LOCK.acquire(timeout=timeout)
if not acquired:
raise RuntimeError("Render queue is busy; try again shortly.")
try:
yield
finally:
RENDER_LOCK.release()
def _to_chat_content_item(item: Any) -> Any:
if isinstance(item, str):
return {"type": "text", "text": item}
if isinstance(item, dict):
return item
return {"type": "text", "text": str(item)}
def _to_response_content_item(item: Any) -> Dict[str, Any]:
if isinstance(item, str):
return {"type": "input_text", "text": item}
if isinstance(item, dict):
itype = item.get("type")
if itype == "text":
return {"type": "input_text", "text": item.get("text", "")}
if itype == "image_url":
image_url = item.get("image_url", {})
if isinstance(image_url, dict):
return {"type": "input_image", "image_url": image_url}
return {"type": "input_image", "image_url": {"url": str(image_url)}}
if itype in {"input_text", "input_image", "input_file"}:
return item
return {"type": "input_text", "text": str(item)}
def _build_openai_content(contents: Any, *, for_chat: bool) -> Any:
"""
Normalize content payloads for chat (strings or multimodal lists) and responses API (typed blocks).
"""
if isinstance(contents, str):
return contents if for_chat else [_to_response_content_item(contents)]
if isinstance(contents, (list, tuple)):
if for_chat:
return [_to_chat_content_item(item) for item in contents]
return [_to_response_content_item(item) for item in contents]
return contents if for_chat else [_to_response_content_item(contents)]
def _build_chat_messages(system: str, contents: Any) -> List[Dict[str, Any]]:
return [
{"role": "system", "content": system},
{"role": "user", "content": _build_openai_content(contents, for_chat=True)},
]
def _build_responses_input(system: str, contents: Any) -> List[Dict[str, Any]]:
return [
{"role": "system", "content": _build_openai_content(system, for_chat=False)},
{"role": "user", "content": _build_openai_content(contents, for_chat=False)},
]
def _requires_responses_api(model: str) -> bool:
lowered = (model or "").lower()
if not lowered:
return False
if lowered in RESPONSES_API_MODEL_NAMES:
return True
return any(
prefix and lowered.startswith(prefix)
for prefix in RESPONSES_API_MODEL_PREFIXES
)
def _should_use_responses_fallback(err: Exception) -> bool:
message = str(err).lower()
return any(hint in message for hint in RESPONSES_API_ERROR_HINTS)
def _extract_chat_content(resp: Any) -> str:
content = resp.choices[0].message.content
if isinstance(content, str):
return content
if isinstance(content, list):
text_parts = []
for chunk in content:
if isinstance(chunk, dict) and chunk.get("type") == "text":
text_parts.append(chunk.get("text", ""))
else:
text_parts.append(str(chunk))
return "\n".join(filter(None, text_parts))
return str(content)
def _extract_responses_content(resp: Any) -> str:
text = getattr(resp, "output_text", None)
if text:
return text
output = getattr(resp, "output", None)
if output:
chunks = []
for item in output:
for elem in getattr(item, "content", []) or []:
chunk_text = getattr(elem, "text", None) or getattr(elem, "content", None)
if chunk_text:
chunks.append(chunk_text)
if chunks:
return "\n".join(map(str, chunks))
return str(resp)
def _invoke_gpt_model(model: str, system: str, contents: Any) -> str:
if not gpt_client:
raise RuntimeError("GPT client is not configured")
messages = _build_chat_messages(system, contents)
responses_input: Optional[List[Dict[str, Any]]] = None
if _requires_responses_api(model):
responses_input = _build_responses_input(system, contents)
resp = gpt_client.responses.create(model=model, input=responses_input)
return _extract_responses_content(resp)
try:
resp = gpt_client.chat.completions.create(model=model, messages=messages)
return _extract_chat_content(resp)
except Exception as err:
if not _should_use_responses_fallback(err):
raise
if responses_input is None:
responses_input = _build_responses_input(system, contents)
resp = gpt_client.responses.create(model=model, input=responses_input)
return _extract_responses_content(resp)
def gemini_call(*, system: str, contents):
"""Wrapper to: enforce RPM and standardize text extraction."""
if not gemini_client:
raise RuntimeError("Gemini client is not configured")
limiter.acquire()
resp = gemini_client.models.generate_content(
model=MODEL,
config=types.GenerateContentConfig(system_instruction=system),
contents=contents,
)
return getattr(resp, "text", str(resp))
def gemini_small_call(*, system: str, contents: str) -> str:
"""Lightweight wrapper for the storyboard assistant using a smaller model with Gemini fallback."""
storyboard_limiter.acquire()
if gpt_client:
target_model = OPENAI_SMALL_MODEL
return _invoke_gpt_model(target_model, system, contents)
if not gemini_client:
raise RuntimeError("Gemini client is not configured")
fallback_model = (GEMINI_SMALL_MODEL or MODEL) or MODEL
if (
not fallback_model
or _requires_responses_api(fallback_model)
or str(fallback_model).lower().startswith("gpt-")
):
fallback_model = MODEL
resp = gemini_client.models.generate_content(
model=fallback_model,
config=types.GenerateContentConfig(system_instruction=system),
contents=contents,
)
return getattr(resp, "text", str(resp))
# ---------------- prompts ----------------
SYSTEM_PROMPT = """You are a Manim CE (0.19.x) code generator/refiner.
Return ONLY valid Python code (no backticks, no prose).
Define exactly one class: AutoScene(Scene).
Keep it short (preferably ≤ ~60 s) and quickly renderable.
Use: from manim import *
Allowed imports: manim, math, numpy.
Forbidden: os, subprocess, sys, requests, pathlib, socket, shutil, psutil, any file/network/OS access.
# CAPTURE POLICY (must follow exactly)
- Insert a comment line `# CAPTURE_POINT` at the final, steady layout of the scene.
- Right after `# CAPTURE_POINT`, call self.wait(0.75) and then END THE SCENE.
- DO NOT add any outro animations, fades, or camera moves after `# CAPTURE_POINT`.
- Ensure all intended elements are visible and legible at `# CAPTURE_POINT` (adequate margins, no overlaps, font ≥ 32 px at 854x480).
# Common Manim CE 0.19 API constraints (must follow)
- Do NOT use `vertex=` with RightAngle(...). Choose the corner by line ordering or set quadrant=(±1, ±1).
- Do NOT call `.to_center()` (not a valid method). Use `.center()` or `.move_to(ORIGIN)`.
- Prefer `.move_to()`, `.align_to()`, `.to_edge()`, `.scale()`, `.next_to()` for layout/placement, keeping generous spacing (buff ≥ 0.6) so nothing overlaps.
- Only introduce objects that directly support the user's request. Avoid decorative or redundant elements that clutter the scene.
"""
DEFAULT_SCENE = """from manim import *
class AutoScene(Scene):
def construct(self):
t = Text("Hello from Manim").scale(1)
self.play(Write(t))
# CAPTURE_POINT
self.wait(0.75)
"""
STORYBOARD_SYSTEM_PROMPT = """You are MathFrames' storyboard director.
You interview educators, refine their ideas, and maintain a structured shot list for a short Manim video.
Always respond with a single JSON object matching this schema exactly:
{
"reply": "<short conversational answer for the user>",
"plan": {
"concept": "<core idea you are visualizing>",
"notes": "<optional reminders or staging notes>",
"scenes": [
{
"title": "Scene 1: Setup",
"objective": "<what this scene accomplishes>",
"steps": ["<bullet-level action>", "..."]
}
]
},
"questions": ["<optional clarification question>", "..."]
}
Rules:
- Keep scene titles in the format: "Scene N: Subtitle".
- Each scene must list 1-5 clear, imperative steps or beats (use educational language, no code).
- Reflect any user-provided edits exactly.
- If the user supplies a plan JSON, treat it as the source of truth and improve it gently.
- Ask for clarification only when needed; otherwise leave the questions array empty.
- Never include Markdown fences, prose outside JSON, or code snippets.
# Professional editor guidance (use to drive the conversation naturally):
- Confirm the concept/topic and any subtopics that should appear.
- Capture the learning goal: what must the viewer understand by the end?
- Clarify how deep the explanation should go (introductory vs. detailed walk-through).
- Ask about any specific visuals, references, or prior scenes the user wants included.
- Check whether there's an existing script or outline to honor.
- Note any stylistic tone or audience expectations (e.g., middle school vs. college).
"""
STORYBOARD_CONFIRM_SYSTEM_PROMPT = """You are MathFrames' storyboard director.
The user has finalized their plan. Craft the final handoff for the rendering model.
Return a JSON object:
{
"reply": "<brief confirmation for the user>",
"render_prompt": "<single paragraph prompt for the Manim code generator>",
"plan": { ... same structure as provided ... }
}
Guidelines:
- Keep render_prompt concise but fully descriptive. Mention each scene's purpose and key visuals.
- Respect the provided storyboard plan exactly—do not invent new scenes or steps.
- Include relevant settings (style, length, audience, resolution) when supplied.
- Do not add Markdown or code; respond with JSON only.
"""
MAX_STORYBOARD_SCENES = 6
class ScenePayload(BaseModel):
id: Optional[str] = None
title: str
objective: Optional[str] = ""
steps: List[str]
@validator("title", pre=True)
def _clean_title(cls, value: Any) -> str:
if isinstance(value, str):
value = value.strip()
if not value:
return "Scene"
return value
@validator("steps", pre=True)
def _coerce_steps(cls, value: Any) -> List[str]:
collected: List[str] = []
if isinstance(value, str):
candidates = value.replace("\r", "").split("\n")
collected.extend(candidates)
elif isinstance(value, (list, tuple)):
for item in value:
if isinstance(item, str):
collected.extend(item.replace("\r", "").split("\n"))
elif isinstance(item, (list, tuple)):
for sub in item:
if isinstance(sub, str):
collected.append(sub)
cleaned = []
for step in collected:
step = str(step).strip(" •\t-")
if step:
cleaned.append(step)
return cleaned or ["Outline the key idea for this scene."]
class PlanPayload(BaseModel):
concept: str
scenes: List[ScenePayload]
notes: Optional[str] = ""
@validator("concept", pre=True)
def _clean_concept(cls, value: Any) -> str:
if isinstance(value, str):
value = value.strip()
return value or "Untitled Concept"
@validator("scenes", pre=True)
def _ensure_scenes(cls, value: Any) -> List[Any]:
if isinstance(value, (list, tuple)):
return list(value)
return []
class StoryboardChatIn(BaseModel):
session_id: Optional[str] = None
message: Optional[str] = ""
plan: Optional[PlanPayload] = None
settings: Optional[Dict[str, Any]] = None
@validator("message", pre=True, always=True)
def _default_message(cls, value: Any) -> str:
if value is None:
return ""
return str(value)
@validator("settings", pre=True, always=True)
def _sanitize_settings(cls, value: Any) -> Dict[str, Any]:
if isinstance(value, dict):
return value
return {}
class StoryboardConfirmIn(BaseModel):
session_id: Optional[str] = None
plan: PlanPayload
settings: Optional[Dict[str, Any]] = None
@validator("settings", pre=True, always=True)
def _sanitize_settings(cls, value: Any) -> Dict[str, Any]:
if isinstance(value, dict):
return value
return {}
@dataclass
class PlanSession:
session_id: str
messages: List[Dict[str, Any]] = field(default_factory=list)
plan: Optional[PlanPayload] = None
settings: Dict[str, Any] = field(default_factory=dict)
created_at: float = field(default_factory=time.time)
updated_at: float = field(default_factory=time.time)
PLAN_SESSIONS: Dict[str, PlanSession] = {}
PLAN_LOCK = threading.Lock()
# ---------- NEW: carry full CLI error back to the refiner ----------
class RenderError(Exception):
def __init__(self, log: str):
super().__init__("Manim render failed")
self.log = log or ""
# ---------------- helpers ----------------
def _clean_code(text: str) -> str:
"""Strip common Markdown fences like ```python ... ``` or ``` ..."""
if not text:
return ""
text = re.sub(r"^```(?:\s*python)?\s*", "", text.strip(), flags=re.IGNORECASE)
text = re.sub(r"\s*```$", "", text)
return text.strip()
def _preflight_sanitize(code: str) -> str:
"""
Auto-correct a few frequent Manim CE 0.19 mistakes to reduce trivial crashes.
- .to_center() -> .center()
- Remove vertex=... from RightAngle(...), then normalize commas.
"""
c = code
# 1) replace invalid method
c = re.sub(r"\.to_center\(\)", ".center()", c)
# 2) remove vertex=... kwarg inside RightAngle(...)
# Case A: middle of arg list with trailing comma
c = re.sub(
r"(RightAngle\s*\([^)]*?),\s*vertex\s*=\s*[^,)\s]+(\s*,)",
r"\1\2",
c,
flags=re.DOTALL,
)
# Case B: last kwarg before ')'
c = re.sub(
r"(RightAngle\s*\([^)]*?),\s*vertex\s*=\s*[^,)\s]+(\s*\))",
r"\1\2",
c,
flags=re.DOTALL,
)
# Normalize doubled commas or commas before ')'
c = re.sub(r",\s*,", ", ", c)
c = re.sub(r",\s*\)", ")", c)
return c
def _extract_json_dict(raw: str) -> Dict[str, Any]:
"""Best-effort JSON extraction from the LLM response."""
if not raw:
raise ValueError("Empty response from model")
stripped = raw.strip()
if stripped.startswith("```"):
stripped = re.sub(r"^```(?:json)?", "", stripped, flags=re.IGNORECASE).strip()
stripped = re.sub(r"```$", "", stripped).strip()
try:
return json.loads(stripped)
except json.JSONDecodeError:
match = re.search(r"\{.*\}", stripped, flags=re.DOTALL)
if match:
candidate = match.group(0)
try:
return json.loads(candidate)
except json.JSONDecodeError:
pass
raise ValueError("Model did not return valid JSON")
def _generate_scene_id(index: int) -> str:
return f"scene-{index}-{uuid.uuid4().hex[:6]}"
def _normalize_scene_title(index: int, title: str) -> str:
title = title.strip()
if not title:
return f"Scene {index}: Beat"
prefix = f"Scene {index}"
if not title.lower().startswith("scene"):
return f"{prefix}: {title}"
parts = title.split(":", 1)
if len(parts) == 2:
return f"{prefix}: {parts[1].strip()}"
return f"{prefix}: {title.split(maxsplit=1)[-1]}"
def _sanitize_plan(plan: Optional[PlanPayload], *, concept_hint: str = "Untitled Concept") -> PlanPayload:
if not plan:
default_scene = ScenePayload(
id=_generate_scene_id(1),
title="Scene 1: Setup",
objective=f"Introduce {concept_hint}",
steps=[
f"Display the title \"{concept_hint}\"",
"Provide quick context for the viewer",
"Highlight the main question to explore",
],
)
return PlanPayload(concept=concept_hint, notes="", scenes=[default_scene])
concept = plan.concept.strip() or concept_hint or "Untitled Concept"
sanitized_scenes: List[ScenePayload] = []
for idx, scene in enumerate(plan.scenes[:MAX_STORYBOARD_SCENES], start=1):
steps = [str(step).strip() for step in scene.steps if step and str(step).strip()]
if not steps:
steps = [f"Explain the next idea for {concept}."]
title = _normalize_scene_title(idx, scene.title or f"Scene {idx}")
objective = (scene.objective or "").strip()
sanitized_scenes.append(
ScenePayload(
id=scene.id or _generate_scene_id(idx),
title=title,
objective=objective or f"Advance the story about {concept}.",
steps=steps,
)
)
if not sanitized_scenes:
sanitized_scenes.append(
ScenePayload(
id=_generate_scene_id(1),
title="Scene 1: Setup",
objective=f"Introduce {concept}",
steps=[
f"Present the main idea \"{concept}\"",
"Explain why it matters to the viewer",
],
)
)
notes = (plan.notes or "").strip()
return PlanPayload(concept=concept, notes=notes, scenes=sanitized_scenes)
def _plan_to_public_dict(plan: PlanPayload) -> Dict[str, Any]:
return plan.dict()
def _format_conversation(messages: List[Dict[str, Any]], limit: int = 8) -> str:
if not messages:
return "None yet."
recent = messages[-limit:]
lines = []
for msg in recent:
role = msg.get("role", "assistant").title()
content = str(msg.get("content", "")).strip()
lines.append(f"{role}: {content}")
return "\n".join(lines)
def _audience_label(value: Optional[str]) -> Optional[str]:
mapping = {
"ms": "middle school students",
"hs": "high school students",
"ug": "undergraduate students",
}
return mapping.get(str(value).lower()) if value else None
def _style_label(value: Optional[str]) -> Optional[str]:
mapping = {
"minimal": "minimal visuals (focus on narration and a few key elements)",
"steps": "step-by-step exposition with clear transitions",
"geometry": "geometry-focused visuals that highlight shapes and spatial relationships",
}
return mapping.get(str(value).lower()) if value else None
def _length_label(value: Optional[str]) -> Optional[str]:
mapping = {
"short": "short (~30–45s)",
"medium": "medium (~60–90s)",
}
return mapping.get(str(value).lower()) if value else None
def _quality_from_settings(settings: Optional[Dict[str, Any]]) -> str:
if not settings:
return "medium"
resolution = str(settings.get("resolution", "")).lower()
if resolution == "480p":
return "low"
if resolution == "1080p":
return "high"
return "medium"
def _quality_flag(quality: str) -> str:
return {
"low": "-ql",
"medium": "-qm",
"high": "-qh",
}.get(quality, "-qm")
def _compose_default_render_prompt(plan: PlanPayload, settings: Dict[str, Any], conversation: List[Dict[str, Any]]) -> str:
lines = [
f"Create a concise Manim CE 0.19 scene illustrating the concept \"{plan.concept}\".",
"Structure the animation around these storyboard scenes:",
]
for scene in plan.scenes:
lines.append(f"- {scene.title} ({scene.objective})")
for step in scene.steps:
lines.append(f" • {step}")
if plan.notes:
lines.append(f"Production notes: {plan.notes}")
if settings:
audience_text = _audience_label(settings.get("audience"))
style_text = _style_label(settings.get("style"))
length_text = _length_label(settings.get("length"))
lines.append("Production settings to honor:")
if audience_text:
lines.append(f"- Tailor explanations for {audience_text} (language, pacing, assumptions).")
if style_text:
lines.append(f"- Presentation style: {style_text}.")
if length_text:
lines.append(f"- Keep total runtime {length_text}.")
resolution = settings.get("resolution")
if resolution:
lines.append(f"- Render for {resolution} output (frame layout should read well at that resolution).")
if conversation:
lines.append("Incorporate the important constraints already discussed with the user.")
lines.append("Follow the CAPTURE policy: include # CAPTURE_POINT just before the final self.wait(0.75).")
return "\n".join(lines)
def _prune_plan_sessions(max_sessions: int = 200, max_age_seconds: int = 3600) -> None:
now = time.time()
with PLAN_LOCK:
if len(PLAN_SESSIONS) > max_sessions:
sorted_items = sorted(PLAN_SESSIONS.items(), key=lambda item: item[1].updated_at)
for session_id, _ in sorted_items[: len(PLAN_SESSIONS) - max_sessions]:
PLAN_SESSIONS.pop(session_id, None)
for session_id, session in list(PLAN_SESSIONS.items()):
if now - session.updated_at > max_age_seconds:
PLAN_SESSIONS.pop(session_id, None)
def _get_or_create_session(session_id: Optional[str], settings: Optional[Dict[str, Any]] = None) -> PlanSession:
with PLAN_LOCK:
if session_id and session_id in PLAN_SESSIONS:
session = PLAN_SESSIONS[session_id]
if settings:
session.settings.update(settings)
return session
new_id = session_id or uuid.uuid4().hex
session = PlanSession(session_id=new_id)
if settings:
session.settings.update(settings)
PLAN_SESSIONS[new_id] = session
_prune_plan_sessions()
return session
def _storyboard_model_reply(session: PlanSession, user_message: str) -> Tuple[str, PlanPayload, List[str]]:
concept_hint = session.plan.concept if session.plan else (user_message.strip() or "Untitled Concept")
session.plan = _sanitize_plan(session.plan, concept_hint=concept_hint)
session.updated_at = time.time()
plan_json = json.dumps(_plan_to_public_dict(session.plan), indent=2)
settings_json = json.dumps(session.settings or {}, indent=2)
history_text = _format_conversation(session.messages)
latest_message = user_message.strip() or "User adjusted the storyboard without additional text."
contents = f"""You are refining a math animation storyboard with the user.
Current storyboard plan JSON:
{plan_json}
Session settings:
{settings_json}
Conversation so far:
{history_text}
Update the plan if needed and craft your reply (JSON only). Latest user message:
{latest_message}
"""
raw_response = gemini_small_call(system=STORYBOARD_SYSTEM_PROMPT, contents=contents)
try:
parsed = _extract_json_dict(raw_response)
except Exception as exc:
print("Storyboard model JSON parse failed:", exc, file=sys.stderr)
parsed = {}
reply_text = str(parsed.get("reply") or "").strip() or "Understood—updating the storyboard."
plan_data = parsed.get("plan")
new_plan = session.plan
if isinstance(plan_data, dict):
try:
new_plan = PlanPayload(**plan_data)
except Exception as exc:
print("Unable to parse plan from storyboard model:", exc, file=sys.stderr)
session.plan = _sanitize_plan(new_plan, concept_hint=session.plan.concept if session.plan else concept_hint)
questions_field = parsed.get("questions") or []
questions = [str(q).strip() for q in questions_field if isinstance(q, (str, int)) and str(q).strip()]
session.updated_at = time.time()
return reply_text, session.plan, questions
def _storyboard_model_confirm(session: PlanSession) -> Tuple[str, PlanPayload, str]:
session.plan = _sanitize_plan(session.plan, concept_hint=session.plan.concept if session.plan else "Untitled Concept")
plan_json = json.dumps(_plan_to_public_dict(session.plan), indent=2)
settings_json = json.dumps(session.settings or {}, indent=2)
history_text = _format_conversation(session.messages)
contents = f"""The user has approved this storyboard plan:
{plan_json}
Session settings:
{settings_json}
Conversation summary:
{history_text}
Produce the confirmation JSON only (no Markdown)."""
raw_response = gemini_small_call(system=STORYBOARD_CONFIRM_SYSTEM_PROMPT, contents=contents)
try:
parsed = _extract_json_dict(raw_response)
except Exception as exc:
print("Storyboard confirm JSON parse failed:", exc, file=sys.stderr)
parsed = {}
reply_text = str(parsed.get("reply") or "").strip() or "Great! Locking the storyboard and preparing the renderer."
plan_data = parsed.get("plan")
final_plan = session.plan
if isinstance(plan_data, dict):
try:
final_plan = PlanPayload(**plan_data)
except Exception as exc:
print("Unable to parse confirmed plan:", exc, file=sys.stderr)
final_plan = _sanitize_plan(final_plan, concept_hint=final_plan.concept if final_plan else session.plan.concept)
render_prompt = str(parsed.get("render_prompt") or "").strip()
if not render_prompt:
render_prompt = _compose_default_render_prompt(final_plan, session.settings, session.messages)
session.plan = final_plan
session.updated_at = time.time()
return reply_text, final_plan, render_prompt
def _run_manim(scene_code: str, run_id: Optional[str] = None, quality: str = "medium") -> Tuple[bytes, Optional[Path]]:
"""Render MP4 (fast) and also save a steady-state PNG (last frame)."""
run_id = run_id or str(uuid.uuid4())[:8]
work = RUNS / run_id; work.mkdir(parents=True, exist_ok=True)
media = work / "media"; media.mkdir(parents=True, exist_ok=True)
scene_path = work / "scene.py"
# Write scene code (after sanitizer)
safe_code = _preflight_sanitize(scene_code)
scene_path.write_text(safe_code, encoding="utf-8")
env = os.environ.copy()
env["PYTHONPATH"] = str(work)
quality_flag = _quality_flag(quality)
# 1) Render video
cmd_video = [
"manim", quality_flag, "--disable_caching",
"--media_dir", str(media),
"-o", f"{run_id}.mp4",
str(scene_path), "AutoScene",
]
proc_v = subprocess.run(
cmd_video,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=env,
)
if proc_v.returncode != 0:
log = proc_v.stdout or ""
print("Manim stdout/stderr:\n", log, file=sys.stderr)
raise RenderError(log)
# Locate output mp4
mp4 = None
for p in media.rglob(f"{run_id}.mp4"):
mp4 = p; break
if not mp4:
for p in media.rglob("*.mp4"):
mp4 = p; break
if not mp4:
raise RenderError("Rendered video not found")
# 2) Save last frame PNG (leverages our CAPTURE_POINT rule)
png_path = None
cmd_png = [
"manim", quality_flag, "--disable_caching", "-s", # -s saves the last frame as an image
"--media_dir", str(media),
str(scene_path), "AutoScene",
]
proc_p = subprocess.run(
cmd_png,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=env,
)
if proc_p.returncode == 0:
cand = None
for p in media.rglob("*.png"):
cand = p
png_path = cand
return mp4.read_bytes(), png_path
def _upload_image_to_gemini(png_path: Path):
"""Prepare an inline data URI that the OpenAI vision API accepts."""
if not gemini_client or not png_path or not png_path.exists():
return None
limiter.acquire()
with open(png_path, "rb") as f:
file_ref = gemini_client.files.upload(
file=f,
config={"mime_type": "image/png"},
)
return file_ref
def llm_generate_manim_code(
prompt: str,
settings: Optional[Dict[str, Any]] = None,
previous_code: Optional[str] = None,
) -> str:
"""First-pass generation (capture-aware)."""
if not gemini_client:
return DEFAULT_SCENE
try:
contents = f"Create AutoScene for: {prompt}\nRemember the CAPTURE POLICY and Common API constraints."
if settings:
audience_text = _audience_label(settings.get("audience"))
style_text = _style_label(settings.get("style"))
length_text = _length_label(settings.get("length"))
contents += "\nProduction settings to respect:"
if audience_text:
contents += f"\n- Tailor explanations for {audience_text}."
if style_text:
contents += f"\n- Style: {style_text}."
if length_text:
contents += f"\n- Target runtime: {length_text}."
resolution = settings.get("resolution")
if resolution:
contents += f"\n- Design visuals that read clearly at {resolution}."
contents += "\nLayout requirement: ensure every element has clear separation—absolutely no overlaps at the capture point."
contents += "\nKeep the composition minimal: only include elements explicitly needed for the prompt."
response_text = gemini_call(system=SYSTEM_PROMPT, contents=contents)
code = _clean_code(response_text)
if "class AutoScene" not in code:
code = previous_code or DEFAULT_SCENE
return code
except Exception:
print("LLM generate error:", file=sys.stderr)
traceback.print_exc()
return previous_code or DEFAULT_SCENE
def llm_refine_from_error(
previous_code: str,
error_message: str,
original_user_prompt: str,
settings: Optional[Dict[str, Any]] = None,
) -> str:
"""When Manim fails; send the *real* CLI log/trace to the LLM."""
if not gemini_client:
return previous_code or DEFAULT_SCENE
try:
trimmed = error_message[-4000:] if error_message else ""
user_prompt = f"""Original user prompt:
{original_user_prompt}
The following Manim CE (0.19.x) code failed to render. Fix it.
Current code:
{previous_code}
Error / stack trace (tail):
{trimmed}
Requirements:
- Fix the bug while preserving the math logic and planned animations.
- Keep exactly one class AutoScene(Scene).
- Keep the CAPTURE POLICY and ensure # CAPTURE_POINT is at the final steady layout.
- Eliminate any overlapping elements; maintain clear spacing at the capture point.
- Remove any objects that are not necessary for the prompt or storyboard; keep the scene concise.
- Scan for nonexistent methods (e.g., `.to_center`) or invalid kwargs (e.g., `vertex=` on RightAngle) and replace with valid Manim CE 0.19 API.
- Prefer `.center()`/`.move_to(ORIGIN)`, and `.move_to()`, `.align_to()`, `.to_edge()`, `.next_to()` for layout.
- Apply the smallest change necessary to resolve the failure; do not overhaul structure, pacing, or stylistic choices the user made.
- Preserve all existing text content (titles, labels, strings) unless it directly causes the error.
- Do not alter functional math/logic that already works; only touch the problematic lines needed for a successful render.
- Return ONLY the corrected Python code (no backticks).
"""
if settings:
audience_text = _audience_label(settings.get("audience"))
style_text = _style_label(settings.get("style"))
length_text = _length_label(settings.get("length"))
extra = "\nProduction targets to preserve:"
if audience_text:
extra += f"\n- Audience: {audience_text}."
if style_text:
extra += f"\n- Style: {style_text}."
if length_text:
extra += f"\n- Runtime goal: {length_text}."
resolution = settings.get("resolution")
if resolution:
extra += f"\n- Ensure layout reads clearly at {resolution}."
user_prompt += extra
response_text = gemini_call(system=SYSTEM_PROMPT, contents=user_prompt)
code = _clean_code(response_text)
if "class AutoScene" not in code:
return previous_code or DEFAULT_SCENE
return code
except Exception:
print("LLM refine error:", file=sys.stderr)
traceback.print_exc()
return previous_code or DEFAULT_SCENE
def llm_visual_refine_from_image(
original_user_prompt: str,
previous_code: str,
png_path: Optional[Path],
settings: Optional[Dict[str, Any]] = None,
) -> str:
"""
Use the screenshot to request layout/legibility/placement fixes.
Includes the original prompt and current code, and asks for minimal edits.
"""
if not gemini_client or not png_path or not png_path.exists():
return previous_code
try:
file_ref = _upload_image_to_gemini(png_path)
if not file_ref:
return previous_code
visual_prompt = f"""You are refining a Manim CE (0.19.x) scene based on its steady-state screenshot.
Original user prompt:
{original_user_prompt}
Current Manim code:
{previous_code}
Tasks (optimize for readability and visual quality without changing the math meaning):
- Fix layout issues (overlaps, cramped margins, alignment, consistent scaling).
- Improve text legibility (minimum size ~32 px at 854x480, adequate contrast).
- Ensure all intended elements are visible at the capture point.
- Remove any overlapping elements; keep generous spacing between visuals.
- Remove decorative or redundant elements that are not required by the user's prompt or storyboard.
- Keep animation semantics as-is unless they're obviously broken.
- Keep exactly one class AutoScene(Scene).
- Preserve the CAPTURE POLICY and place `# CAPTURE_POINT` at the final steady layout with self.wait(0.75) and NO outro after that.
- Make the minimal adjustments needed to fix readability; do not rework the overall composition or pacing beyond what the user already authored.
- Preserve all text labels, titles, and strings as written unless they directly cause overlap/legibility issues.
- Avoid rewriting functioning math/logic—only adjust positioning, styling, or other elements required to fix the visual defect.
Return ONLY the revised Python code (no backticks).
"""
if settings:
audience_text = _audience_label(settings.get("audience"))
style_text = _style_label(settings.get("style"))
length_text = _length_label(settings.get("length"))
visual_prompt += "\nKeep these production settings in mind:"
if audience_text:
visual_prompt += f"\n- Audience: {audience_text}."
if style_text:
visual_prompt += f"\n- Style: {style_text}."
if length_text:
visual_prompt += f"\n- Runtime target: {length_text}."
resolution = settings.get("resolution")
if resolution:
visual_prompt += f"\n- Layout should stay readable at {resolution}."
response_text = gemini_call(system=SYSTEM_PROMPT, contents=[file_ref, visual_prompt])
code = _clean_code(response_text)
if "class AutoScene" not in code:
return previous_code
return code
except Exception:
print("LLM visual refine error:", file=sys.stderr)
traceback.print_exc()
return previous_code
def _attempt_render_with_refine(
base_code: str,
*,
user_prompt: str,
settings: Optional[Dict[str, Any]],
quality: str,
run_prefix: str,
max_refines: int,
) -> Tuple[Optional[str], Optional[bytes], Optional[Path], str]:
"""
Try to render `base_code`, refining up to `max_refines` times using Gemini on failure.
Returns tuple: (final_code, video_bytes, png_path, last_error_log).
If rendering still fails, code/video/png are None and last_error_log carries the last trace.
"""
attempts = 0
current_code = base_code
last_log = ""
while True:
try:
mp4_bytes, png_path = _run_manim(
current_code,
run_id=f"{run_prefix}_try{attempts}",
quality=quality,
)
return current_code, mp4_bytes, png_path, ""
except RenderError as err:
last_log = err.log or last_log
except Exception:
last_log = traceback.format_exc()
if attempts >= max_refines:
return None, None, None, last_log
attempts += 1
current_code = llm_refine_from_error(
previous_code=current_code,
error_message=last_log,
original_user_prompt=user_prompt,
settings=settings,
)
def refine_loop(
user_prompt: str,
settings: Optional[Dict[str, Any]] = None,
max_error_refines: int = 3,
do_visual_refine: bool = False,
) -> bytes:
"""
Generate → render; on error, refine up to N times from Manim traceback → re-render.
If first render succeeds and do_visual_refine==True, run an image-based refinement
using the saved steady-state PNG, then re-render. Fallback to the best successful MP4.
"""
# 1) initial generation (capture-aware)
initial_code = llm_generate_manim_code(user_prompt, settings=settings)
quality = _quality_from_settings(settings)
code, mp4_bytes, png_path, last_log = _attempt_render_with_refine(
initial_code,
user_prompt=user_prompt,
settings=settings,
quality=quality,
run_prefix="primary",
max_refines=max_error_refines,
)
if code is None:
print("Primary render failed after refinements; generating fallback code...", file=sys.stderr)
fallback_code = llm_generate_manim_code(user_prompt, settings=settings)
code, mp4_bytes, png_path, last_log = _attempt_render_with_refine(
fallback_code,
user_prompt=user_prompt,
settings=settings,
quality=quality,
run_prefix="fallback",
max_refines=2,
)
if code is None:
error_message = last_log or "Render failed after fallback attempts."
raise RenderError(error_message)
# 3) optional visual refinement loop
if do_visual_refine and png_path and png_path.exists():
refined2 = llm_visual_refine_from_image(
original_user_prompt=user_prompt,
previous_code=code,
png_path=png_path,
settings=settings,
)
if refined2.strip() != code.strip():
try:
mp4_bytes2, _ = _run_manim(refined2, run_id="iter2", quality=quality)
return mp4_bytes2
except Exception:
print("Visual refine render failed; returning best known render.", file=sys.stderr)
return mp4_bytes
return mp4_bytes
def _auto_fix_render(
user_prompt: str,
code: str,
settings: Optional[Dict[str, Any]],
initial_log: str,
max_attempts: int = 3,
) -> Tuple[Optional[str], Optional[bytes], str]:
"""Attempt to auto-fix user code via LLM refinement if available."""
if not gemini_client:
return None, None, initial_log
quality = _quality_from_settings(settings)
attempt_code = code
last_log = initial_log
for attempt in range(max_attempts):
refined = llm_refine_from_error(
previous_code=attempt_code,
error_message=last_log,
original_user_prompt=user_prompt,
settings=settings,
)
if refined.strip() == attempt_code.strip():
break
attempt_code = refined
try:
mp4_bytes, _ = _run_manim(
attempt_code,
run_id=f"manual_fix_{attempt}",
quality=quality,
)
return attempt_code, mp4_bytes, ""
except RenderError as err:
last_log = err.log or last_log
return None, None, last_log
# ---------------- API ----------------
@app.post("/storyboard/chat")
def storyboard_chat(inp: StoryboardChatIn):
if not (gpt_client or gemini_client):
raise HTTPException(500, "Storyboard model is not configured")
if not inp.message.strip() and not inp.plan:
raise HTTPException(400, "Message or plan updates are required.")
session = _get_or_create_session(inp.session_id, inp.settings or {})
if inp.settings:
session.settings.update(inp.settings)
if inp.plan:
try:
session.plan = _sanitize_plan(inp.plan, concept_hint=inp.plan.concept)
except Exception as exc:
print("Failed to apply user-supplied plan:", exc, file=sys.stderr)
user_message = inp.message.strip()
if user_message:
session.messages.append({"role": "user", "content": user_message})
else:
session.messages.append({"role": "user", "content": "[Plan updated without additional message]"})
try:
reply_text, plan_model, questions = _storyboard_model_reply(session, user_message)
except Exception as exc:
print("Storyboard chat error:", exc, file=sys.stderr)
raise HTTPException(500, "Storyboard assistant failed to respond")
session.messages.append({"role": "assistant", "content": reply_text})
return {
"session_id": session.session_id,
"reply": reply_text,
"plan": plan_model.dict(),
"questions": questions,
"settings": session.settings,
}
@app.post("/storyboard/confirm")
def storyboard_confirm(inp: StoryboardConfirmIn):
if not (gpt_client or gemini_client):
raise HTTPException(500, "Storyboard model is not configured")
session = _get_or_create_session(inp.session_id, inp.settings or {})
if inp.settings:
session.settings.update(inp.settings)
session.plan = _sanitize_plan(inp.plan, concept_hint=inp.plan.concept)
session.messages.append({"role": "user", "content": "[User confirmed the storyboard plan]"})
try:
reply_text, final_plan, render_prompt = _storyboard_model_confirm(session)
except Exception as exc:
print("Storyboard confirm error:", exc, file=sys.stderr)
final_plan = session.plan
render_prompt = _compose_default_render_prompt(final_plan, session.settings, session.messages)
reply_text = "Plan confirmed. Falling back to a templated prompt."
session.messages.append({"role": "assistant", "content": reply_text})
return {
"session_id": session.session_id,
"reply": reply_text,
"render_prompt": render_prompt,
"plan": final_plan.dict(),
"settings": session.settings,
}
class PromptIn(BaseModel):
prompt: str
settings: Optional[Dict[str, Any]] = None
@validator("prompt")
def _validate_prompt(cls, value: str) -> str:
if not value or not value.strip():
raise ValueError("Prompt cannot be empty")
return value.strip()
@validator("settings", pre=True, always=True)
def _sanitize_settings(cls, value: Any) -> Optional[Dict[str, Any]]:
if isinstance(value, dict):
return value
return None
class GenerateCodeIn(PromptIn):
pass
class RenderCodeIn(BaseModel):
code: str
prompt: Optional[str] = ""
settings: Optional[Dict[str, Any]] = None
auto_fix: bool = False
@validator("code")
def _validate_code(cls, value: str) -> str:
if not value or not value.strip():
raise ValueError("Code cannot be empty")
return value
@validator("prompt", pre=True, always=True)
def _sanitize_prompt(cls, value: Any) -> str:
return str(value or "").strip()
@validator("settings", pre=True, always=True)
def _sanitize_settings(cls, value: Any) -> Optional[Dict[str, Any]]:
if isinstance(value, dict):
return value
return None
class EmailIn(BaseModel):
email: str
@property
def sanitized(self) -> str:
return self.email
@validator("email")
def validate_email(cls, value: str) -> str:
cleaned = value.strip().lower()
if not cleaned:
raise ValueError("Email cannot be empty")
if not re.match(r"^[^@\s]+@[^@\s]+\.[^@\s]+$", cleaned):
raise ValueError("Email is not valid")
return cleaned
@app.get("/")
def health():
return {
"ok": True,
"model": MODEL,
"has_gemini": bool(gemini_client),
"has_gpt": bool(gpt_client),
}
@app.post("/generate-code")
def generate_code(inp: GenerateCodeIn):
"""Return ONLY the generated Manim Python code (no rendering)."""
code = llm_generate_manim_code(inp.prompt, settings=inp.settings)
return {"code": code}
@app.post("/generate-and-render")
def generate_and_render(inp: PromptIn):
try:
with acquire_render_slot():
mp4 = refine_loop(inp.prompt, settings=inp.settings, max_error_refines=3, do_visual_refine=False)
except RuntimeError:
raise HTTPException(
status_code=503,
detail={
"error": "queue_busy",
"message": "Another render is already running. Please wait a moment and try again.",
},
)
except Exception:
raise HTTPException(500, "Failed to produce video after refinement")
return Response(
content=mp4,
media_type="video/mp4",
headers={"Content-Disposition": 'inline; filename="result.mp4"'}
)
@app.post("/render-code")
def render_code(inp: RenderCodeIn):
quality = _quality_from_settings(inp.settings)
try:
with acquire_render_slot():
try:
mp4_bytes, _ = _run_manim(inp.code, run_id="manual", quality=quality)
return Response(
content=mp4_bytes,
media_type="video/mp4",
headers={"Content-Disposition": 'inline; filename="result.mp4"'}
)
except RenderError as exc:
log = exc.log or ""
# if False: #not inp.auto_fix:
# raise HTTPException(
# status_code=400,
# detail={
# "error": "Render failed",
# "message": "Render failed. Attempting automatic fix...",
# },
# )
fixed_code, fixed_video, final_log = _auto_fix_render(
user_prompt=inp.prompt or "User-edited Manim code",
code=inp.code,
settings=inp.settings,
initial_log=log,
)
if fixed_code and fixed_video:
payload = {
"auto_fixed": True,
"message": "Your code triggered a Manim error, so I applied the smallest possible fix (keeping your edits) and reran the render.",
"code": fixed_code,
"video_base64": base64.b64encode(fixed_video).decode("utf-8"),
"video_mime_type": "video/mp4",
"files": [
{"filename": "scene.py", "contents": fixed_code}
],
"meta": {"resolution": inp.settings.get("resolution") if inp.settings else None},
"log_tail": (log or "")[-600:]
}
return Response(
content=json.dumps(payload),
media_type="application/json",
)
detail_log = (final_log or log)[-6000:]
raise HTTPException(
status_code=400,
detail={"error": "Render failed", "log": detail_log, "code": inp.code},
)
except RuntimeError:
raise HTTPException(
status_code=503,
detail={
"error": "queue_busy",
"message": "Another render is already running. Please wait a moment and try again.",
},
)
except Exception as exc:
raise HTTPException(status_code=500, detail={"error": "Unexpected render failure", "log": str(exc)})
@app.post("/store-email")
def store_email(email: EmailIn):
"""Store the provided email address in the configured Hugging Face dataset."""
if not hf_api or not HF_TOKEN:
raise HTTPException(500, "Email logging is not configured")
sanitized_email = email.sanitized
timestamp = int(time.time())
key = f"emails/{int(time.time() * 1000)}-{uuid.uuid4().hex}.json"
payload = {"email": sanitized_email, "ts": timestamp}
try:
hf_api.create_commit(
repo_id=HF_DATASET_ID,
repo_type="dataset",
operations=[
CommitOperationAdd(
path_in_repo=key,
path_or_fileobj=BytesIO(json.dumps(payload).encode("utf-8")),
)
],
commit_message=f"Log email: {sanitized_email}",
token=HF_TOKEN,
)
except Exception as exc:
print("Failed to log email to Hugging Face:", exc, file=sys.stderr)
raise HTTPException(500, "Failed to save email address")
return {"stored": True, "path": key}
|